Correction for 'Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO nanoparticles in aqueous solutions' by Thomas Degabriel, Elodie Colaço , , 2018, , 12898-12907, https://doi.org/10.1039/C7CP08054A.
View Article and Find Full Text PDFThe biogenic calcium phosphate (CaP) crystallization is a process that offers elegant materials design strategies to achieve bioactive and biomechanical challenges. Indeed, many biomimetic approaches have been developed for this process in order to produce mineralized structures with controlled crystallinity and shape. Herein, we propose an advanced biomimetic approach for the design of ordered hybrid mineralized nano-objects with highly anisotropic features.
View Article and Find Full Text PDFA comprehensive understanding of the mechanism by which type I collagen (Col) interacts with hydroxyapatite nanoparticles (Hap NPs) in aqueous solutions is a pivotal step for guiding the design of biologically relevant nanocomposites with controlled hierarchical structure. In this paper we use a variety of Hap NPs differing by their shape (rod vs platelet) and their size (∼30 vs ∼130 nm) and investigate their mechanism(s) of interaction with collagen. The addition of collagen to the Hap suspensions induces different effects that strongly depend on the nanoparticle type.
View Article and Find Full Text PDFHerein, we report the use of sequential layer-by-layer (LbL) assembly to design nanostructured films made of recombinant bacterial membrane fractions (MF), which overexpress cytochrome P450 (CYP) and cytochrome P450 reductase. The ability to incorporate MF in LbL multilayered films is demonstrated by an in situ quartz crystal microbalance with dissipation monitoring using poly-l-lysine or poly-l-ornithine as a polycation. Results show that MF preserve a remarkable CYP1A2 catalytic property in the adsorbed phase.
View Article and Find Full Text PDFWe investigate the characteristics, fate and photocatalytic activity of spheroid- and rod-shaped TiO2 nano-crystals in aqueous solutions to better understand their behaviour in media of biological and environmental interest. For this purpose, the potential of a solvothermal method in synthesizing highly crystalline nanoparticles and tuning their sizes/shapes is explored. Spheroid- and rod-shaped nanoparticles are successfully obtained with different aspect ratios, while keeping their structures as well as their cross-sectional areas identical.
View Article and Find Full Text PDF