Nucleic acid delivery requires vectorization for protection from nucleases, preventing clearance by the reticuloendothelial system, and targeting to allow cellular uptake. Nanovectors meeting the above specifications should be safe for the patient, simple to manufacture, and display long-term stability. Our nanovectors were obtained via the green process of polyelectrolyte complexation, carried out at 25 °C in water at a low shear rate using chitosan (a polycationic biocompatible polysaccharide of specific molar mass and acetylation degree) and dextran sulfate as a polyanionic biocompatible polysaccharide.
View Article and Find Full Text PDFCondensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA.
View Article and Find Full Text PDFBacteria tumble periodically, following environmental cues. Whether they can tumble near a solid surface is a basic issue for the inception of infection or mineral biofouling. Observing freely swimming Escherichia coli near and parallel to a glass surface imaged at high magnification (×100) and high temporal resolution (500 Hz), we identified tumbles as events starting (or finishing, respectively) in abrupt deceleration (or reacceleration, respectively) of the body motion.
View Article and Find Full Text PDFFlagellar propulsion of swimming Escherichia coli produces circling clockwise motions near planar solid surfaces. Counterclockwise motion was first reported near air-TN medium interfaces, showing that slip at the interface is a key parameter of bacterial swimming.
View Article and Find Full Text PDF