Pharmacologically active salicylanilides (2-hydroxy--phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the activity on U87 human glioblastoma (GBM) cells.
View Article and Find Full Text PDFTissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy.
View Article and Find Full Text PDFMycobacterium tuberculosis is an intracellular pathogen and the uptake of the antimycobacterial compounds by host cells is limited. Novel antimycobacterials effective against intracellular bacteria are needed. New N-substituted derivatives of 4-aminosalicylic acid have been designed and evaluated.
View Article and Find Full Text PDFMost therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) has an overall poor prognosis and unsatisfactory treatment options. MPM nodules, protruding into the pleural cavity may have growth and spreading dynamics distinct that of other solid tumors. We demonstrate that multicellular aggregates can develop spontaneously in the majority of tested MPM cell lines when cultured at high cell density.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNon-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment.
View Article and Find Full Text PDFEndothelial cell motility has fundamental role in vasculogenesis and angiogenesis during developmental or pathological processes. Tks4 is a scaffold protein known to organize the cytoskeleton of lamellipodia and podosomes, and thus modulating cell motility and invasion. In particular, Tks4 is required for the localization and activity of membrane type 1-matrix metalloproteinase, a key factor for extracellular matrix (ECM) cleavage during cell migration.
View Article and Find Full Text PDFThree-dimensional (3D) printing technology allowed fast and cheap prototype fabrication in numerous segments of industry and it also became an increasingly versatile experimental platform in life sciences. Yet, general purpose software tools to control printer hardware are often suboptimal for bioprinting applications. Here we report a package of open source software tools that we developed specifically to meet bioprinting requirements: Machine movements can be (i) precisely specified using high level programming languages, and (ii) easily distributed across a batch of tissue culture dishes.
View Article and Find Full Text PDFVascular patterning is a key process during development and disease. The diffusive decoy receptor sVEGFR1 (sFlt1) is a known regulator of endothelial cell behavior, yet the mechanism by which it controls vascular structure is little understood. We propose computational models to shed light on how vascular patterning is guided by self-organized gradients of the VEGF/sVEGFR1 factors.
View Article and Find Full Text PDFNeurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours.
View Article and Find Full Text PDFShort and long distance cell dispersal can have a marked effect on tumor structure, high cellular motility could lead to faster cell mixing and lower observable intratumor heterogeneity. Here we evaluated a model for cell mixing that investigates how short-range dispersal and cell turnover will account for mutational proportions. We show that cancer cells can penetrate neighboring and distinct areas in a matter of days.
View Article and Find Full Text PDFSwarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper.
View Article and Find Full Text PDFWe report a spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell-cell adhesions.
View Article and Find Full Text PDFPattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups.
View Article and Find Full Text PDFWe investigate the effect of myosin II inhibition on cell shape and nuclear motility in cultures of mouse radial glia-like neural progenitor and rat glioma C6 cells. Instead of reducing nucleokinesis, the myosin II inhibitor blebbistatin provokes an elongated bipolar morphology and increased nuclear motility in both cell types. When myosin II is active, time-resolved traction force measurements indicate a pulling force between the leading edge and the nucleus of C6 cells.
View Article and Find Full Text PDFCell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in other developmental or pathological processes as well. During vasculogenesis, multicellular sprouts invade rapidly into avascular areas, eventually creating a polygonal pattern. Sprout elongation, in turn, depends on a continuous supply of endothelial cells, streaming along the sprout toward its tip.
View Article and Find Full Text PDFWe investigate the role of dystroglycan, a major laminin-1 receptor and central member of the dystrophin-glycoprotein complex, in the laminin-1 induced motility of cultured Muller glial cells. Binding of laminin-1 to dystroglycan was prevented by IIH6, a function-blocking monoclonal antibody against alpha-dystroglycan. As an alternative means of inhibition, we used heparin to mask the dystroglycan binding site of the laminin-1, known to overlap with heparin binding sites.
View Article and Find Full Text PDFSpatial correlation was observed between the localization of laminin-1 at the inner limiting membrane (ILM) and extensive Muller glial process arborization in the same area, as demonstrated by immunolabeling of Muller glial processes and laminin-1 in rat retinae in situ. To test if this spatial correlation is due to a functional relationship, we investigated the impact of laminin-1 on the motility of cultured primary rat and mouse retinal Muller glial cells by statistical analysis of computer-controlled videomicroscopic time-lapse images. We demonstrate that laminin-1 increases motility and path-searching activity of Muller cells in vitro and it also enhances the cells' process formation/withdrawal dynamism.
View Article and Find Full Text PDF