Here, a novel targeted nanostructure complex was designed as an alternative to the traditional treatment approaches for breast cancer. A delivery system utilizing CuS nanoparticles (CuS NPs) was developed for the purpose of targeted administration of doxorubicin (Dox), an anticancer agent. To regulate Dox release, chitosan (CS), a biodegradable and hydrophilic polymer with biocompatible properties, was applied to coat the Dox-loaded CuS NPs.
View Article and Find Full Text PDFChemotherapy has been widely acknowledged as a primary approach for cancer treatment. However, the administration of chemotherapy agents is often limited by their adverse effects that result from an inability to distinguish between healthy and malignant cells. As such, utilising nanocarriers in targeted drug delivery can significantly reduce these side effects while enhancing therapeutic efficacy.
View Article and Find Full Text PDFDue to the limitations of conventional cancer treatment methods, nanomedicine has appeared as a promising alternative, allowing improved drug targeting and decreased drug toxicity. In the development of cancer nanomedicines, among various nanoparticles (NPs), DNA nanostructures are more attractive because of their precisely controllable size, shape, excellent biocompatibility, programmability, biodegradability, and facile functionalization. Aptamers are introduced as single-stranded RNA or DNA molecules with recognize their corresponding targets.
View Article and Find Full Text PDFObjectives: A targeted delivery platform was prepared to co-deliver both doxorubicin (Dox) as an anticancer drug and FOXM1 aptamer as a therapeutic substance to breast cancer cells (4T1 and MCF-7) to reduce Dox side effects and increase its therapeutic efficacy. The targeted system (AuNPs-AFPA) consisted of FOXM1 aptamer, AS1411 aptamer (targeting oligonucleotide), ATP aptamer, and gold nanoparticles (AuNPs) as a carrier.
Materials And Methods: AuNPs were synthesized by reduction of HAuCl4.
Mg/N doped-carbon quantum dots (CQDs) with dual drug targeting and cell imaging properties was synthesized. Mg/N doped-CQDs synthesized by a hydrothermal method. Operating pyrolysis parameters such as temperature, time, and pH were optimized to achieve CQDs with high quantum yield (QY).
View Article and Find Full Text PDFHerein, we presented a novel DOX-loaded multi-storey DNA nanostructure, including AS1411 aptamer as a targeting agent for treatment of target cells (MCF-7 and 4T1). Gel retardation test and fluorometric analysis were used to examine the construction of DNA nanostructure and loading of DOX in the complex. At pH 5.
View Article and Find Full Text PDFImproving of tumor targeting and decreasing side effects at normal cells of antitumor drugs are necessary to promote the cancer chemotherapy efficacy. Herein, we have synthesized a novel 21-arm star like diblock polymer of β-cyclodextrin-{poly(ε-caprolactone)-poly(2-aminoethylmethacrylate)} which decorated with nucleolin aptamer (AS1411). The diblock polymer was prepared by combined ROP with electron transfer atom transfer radical polymerization (ARGET ATRP) methods followed camptothecin (CPT) encapsulation with high entrapment efficiency (65%).
View Article and Find Full Text PDFThe design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions.
View Article and Find Full Text PDF