Int J Biomed Imaging
December 2014
Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE) is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region.
View Article and Find Full Text PDFThis paper focuses on breast self-examination (BSE) stroke position and palpation level classification for the development of a computer vision-based BSE training and guidance system. In this study, image frames are extracted from a BSE video and processed considering the color information, shape, and texture by wavelet transform and first order color moment. The new approach using artificial neural network and wavelet transform can identify BSE stroke positions and palpation levels, i.
View Article and Find Full Text PDF