The aim of this study is to determine the feasibility of achieving quantitative measurement in (90)Y-microspheres liver selective internal radiotherapy (SIRT) by imaging (90)Y with a conventional non-time of flight (TOF) PET device. Instead of the bremsstrahlung x-rays of the β-decay, the low branch of e(-)- e(+) pair production in the (90)Y-decay was used. The activity distribution in a phantom-simulated liver SIRT was obtained by direct (90)Y-PET imaging.
View Article and Find Full Text PDFUnlabelled: Accurate dosimetry in (90)Y peptide receptor radionuclide therapy (PRRT) helps to optimize the injected activity, to prevent kidney or red marrow toxicity, while giving the highest absorbed dose to tumors. The aim of this study was to evaluate whether direct (90)Y bismuth germanate or lutetium yttrium orthosilicate time-of-flight PET was accurate enough to provide dosimetry estimates suitable to (90)Y PRRT.
Method: To overcome the statistical uncertainty arising from the low (90)Y positron counting rate, the computation of the cortex mean-absorbed dose was divided into 4 steps: delineation of the cortex volume of interest (VOI) on the CT scan, determination of the recovery coefficient from the cortex VOI using the point-spread function of the whole imaging process, determination of the mean cortex-absorbed dose per unit cumulated activity in the cortex (S(cortex←cortex) value) from the cortex VOI using a (90)Y voxel S value kernel, and determination of the number of decays in the cortex VOI from the PET reconstruction.
Eur J Nucl Med Mol Imaging
August 2010
Purpose: (90)Y-labelled compounds used in targeted radiotherapy are usually imaged with SPECT by recording the bremsstrahlung X-rays of the beta decay. The continuous shape of the X-ray spectrum induces the presence of a significant fraction of scatter rays in the acquisition energy window, reducing the accuracy of biodistribution and of dosimetry assessments.
Methods: The aim of this paper is to use instead the low branch of e(-) e(+) pair production in the (90)Y decay.
Eur J Nucl Med Mol Imaging
December 2009
Purpose: The aim of this study is to optimize different parameters in the time-of-flight (TOF) reconstruction for the Philips GEMINI TF. The use of TOF in iterative reconstruction introduces additional variables to be optimized compared to conventional PET reconstruction. The different parameters studied are the TOF kernel width, the kernel truncation (used to reduce reconstruction time) and the scatter correction method.
View Article and Find Full Text PDFEur J Nucl Med
November 1996
Single-photon emission tomographic (SPET) reconstruction can be improved, especially for noisy images, by using the iterative expectation-maximization of the maximum-likelihood (EM-ML) algorithm. Its application to clinical routine is, however, hampered by the high number of iterations necessary to achieve acceptable results. Therefore various methods have been developed to accelerate the EM-ML algorithm.
View Article and Find Full Text PDFA contour detection algorithm for cerebral studies, using the method of Tomitani, has been implemented on a single-photon emission tomographic (SPET) system. It is based on the detetion by threshold of the brain edge in the sinogram and does not depend on the reconstruction algorithm. Thirteen normal subjects underwent an examination on both computed tomography (CT) and SPET using a head holder to ensure the reproducibility of the positioning.
View Article and Find Full Text PDFA new method for correcting simultaneously the attenuation, scatter and resolution effects in SPECT has been developed for the case of a homogeneous medium. It is based on an effective model of the scatter process. This model depends on only four parameters which are determined experimentally and remain independent of the geometry and of the dimensions of the scatter medium.
View Article and Find Full Text PDF