Publications by authors named "Elmar Slikboer"

Electric field and surface charge measurements are presented to understand the dynamics in the plasma-surface interaction of a plasma jet and a dielectric surface. The ITO coated backside of the dielectric allowed to impose a DC bias and thus compare the influence of a grounded, biased and floating potential. When imposing a controlled potential at the back of the target, the periodical charging is directly dependent on the pulse length, irrespective of that control potential.

View Article and Find Full Text PDF

The dynamics of ionization waves (IWs) in atmospheric pressure discharges is fundamentally determined by the electric polarity (positive or negative) at which they are generated and by the presence of memory effects, i.e. leftover charges and reactive species that influence subsequent IWs.

View Article and Find Full Text PDF

The interaction between an argon plasma jet excited using microsecond duration voltage pulses and a liquid target was examined using Thomson scattering to quantify the temporal evolution of the electron density and temperature. The electrical resistance between a liquid target and the electrical ground was varied from 1 to [Formula: see text] to mimic different conductivity liquids while the influence of the varying electrical properties on the electron dynamics within the plasma were examined. It was demonstrated that the interaction between the plasma jet and a liquid target grounded via a high resistance resulted in typical dielectric barrier discharge behaviour, with two discharge events per applied voltage pulse.

View Article and Find Full Text PDF

Pockels-based Mueller polarimetry is presented as a novel diagnostic technique for studying time and space-resolved and in-situ the interaction between an organic sample (a layer of onion cells) and non-thermal atmospheric pressure plasma. The effect of plasma is complex, as it delivers electric field, radicals, (UV) radiation, non-uniform in time nor in space. This work shows for the first time that the plasma-surface interaction can be characterized through the induced electric field in an electro-optic crystal (birefringence caused by the Pockels effect) while at the same moment the surface evolution of the targeted sample is monitored (depolarization) which is attached to the crystal.

View Article and Find Full Text PDF

The plasma-surface interaction is studied for a low temperature helium plasma jet generated at atmospheric pressure using Mueller polarimetry on an electro-optic target. The influence of the AC kHz operating frequency is examined by simultaneously obtaining images of the induced electric field and temperature of the target. The technique offers high sensitivity in the determination of the temperature variation on the level of single degrees.

View Article and Find Full Text PDF