Publications by authors named "Ellsworth J Welton"

This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed.

View Article and Find Full Text PDF

As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.

View Article and Find Full Text PDF

The National Aeronautics and Space Administration Micropulse Lidar Network Version 3 cloud detection algorithm is described and its differences relative to the previous version highlighted. Clouds are identified from normalized Level 1 signal profiles using two complementary methods. The first considers signal derivatives vertically for resolving low-level clouds.

View Article and Find Full Text PDF

One-year of continuous ground-based lidar observations (2012) are analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e.

View Article and Find Full Text PDF

The emissions of particulate matter (PM) from anthropogenic sources raise public concern. A new method is described here that was developed to complete in situ rapid response measurements of PM mass emissions from fugitive dust sources by use of optical remote sensing (ORS) and an anemometer. The ORS system consists of one ground-based micropulse light detection and ranging (MPL) device that was mounted on a positioner, two open path-Fourier transform infrared (OP-FTIR) spectrometers, and two open path-laser transmissometers (OP-LT).

View Article and Find Full Text PDF