The topology of multidimensional potential energy surfaces defines the bimolecular collision outcomes of open-shell radicals with molecular partners. Understanding these surfaces is crucial for predicting the inelastic scattering and chemical transformations of increasingly complex radical-molecule collisions. To characterize the inelastic scattering mechanisms of nitric oxide (NO) radicals with large alkanes, we generated the collision complexes comprised of NO with propane or -butane.
View Article and Find Full Text PDFIn bimolecular collisions between open-shell radicals and increasingly-larger alkanes, the relative impact configurations open the possibility of reactive and nonreactive outcomes that are isomer specific. To model the interaction potential between molecular scattering partners, observables are needed from experiments that can quantify both the initial molecular orientations and internal energies on multidimensional potential energy surfaces. Recent work by our group demonstrated that upon infrared (IR) excitation, the dynamics of the nitric oxide-methane collision complex (NO-CH) are dependent on the initial monomer geometries, as small changes in configuration substantially affect the energies, electronic couplings, and predissociation pathways due to the Jahn-Teller effect.
View Article and Find Full Text PDF