One strand of modern coexistence theory (MCT) partitions invader growth rates (IGR) to quantify how different mechanisms contribute to species coexistence, highlighting fluctuation-dependent mechanisms. A general conclusion from the classical analytic MCT theory is that coexistence mechanisms relying on temporal variation (such as the temporal storage effect) are generally less effective at promoting coexistence than mechanisms relying on spatial or spatiotemporal variation (primarily growth-density covariance). However, the analytic theory assumes continuous population density, and IGRs are calculated for infinitesimally rare invaders that have infinite time to find their preferred habitat and regrow, without ever experiencing intraspecific competition.
View Article and Find Full Text PDFAbstractIn many species, a few individuals produce most of the next generation. How much of this reproductive skew is driven by variation among individuals in fixed traits, how much by external factors, and how much by random chance? And what does it take to have truly exceptional lifetime reproductive output (LRO)? In the past, we and others have partitioned the variance of LRO as a proxy for reproductive skew. Here we explain how to partition LRO skewness itself into contributions from fixed trait variation, four forms of "demographic luck" (birth state, fecundity luck, survival trajectory luck, and growth trajectory luck), and two kinds of "environmental luck" (birth environment and environment trajectory).
View Article and Find Full Text PDFChance pervades life. In turn, life histories are described by probabilities (e.g.
View Article and Find Full Text PDFAbstractSensitivity analysis is often used to help understand and manage ecological systems by assessing how a constant change in vital rates or other model parameters might affect the management outcome. This allows the manager to identify the most favorable course of action. However, realistic changes are often localized in time-for example, a short period of culling leads to a temporary increase in the mortality rate over the period.
View Article and Find Full Text PDFAbstractMany potential mechanisms promote species coexistence, but we know little about their relative importance. To compare multiple mechanisms, we modeled a two-trophic planktonic food web based on mechanistic species interactions and empirically measured species traits. We simulated thousands of possible communities under realistic and altered interaction strengths to assess the relative importance of three potential drivers of phytoplankton and zooplankton species richness: resource-mediated coexistence mechanisms, predator-prey interactions, and trait trade-offs.
View Article and Find Full Text PDFAbstractIn multispecies disease systems, pathogen spillover from a "reservoir community" can maintain disease in a "sink community" where it would otherwise die out. We develop and analyze models for spillover and disease spread in sink communities, focusing on questions of control: which species or transmission links are the most important to target to reduce the disease impact on a species of concern? Our analysis focuses on steady-state disease prevalence, assuming that the timescale of interest is long compared with that of disease introduction and establishment in the sink community. We identify three regimes as the sink community scales from 0 to 1.
View Article and Find Full Text PDFSensitivity analysis is often used to help understand and manage ecological systems, by assessing how a constant change in vital rates or other model parameters might affect the management outcome. This allows the manager to identify the most favorable course of action. However, realistic changes are often localized in time-for example, a short period of culling leads to a temporary increase in the mortality rate over the period.
View Article and Find Full Text PDFAs a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co-expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions.
View Article and Find Full Text PDFBackground: While researchers have found a link between childhood maltreatment and language difficulties, the underlying mechanisms remain unclear and replication across the literature is inconsistent.
Objective: To conduct a systematic review examining the methodological inconsistencies related to studies' samples construction, maltreatment measurement, and language outcomes using a language acquisition theory-based approach.
Methods: Using the PRISMA framework, a literature search was conducted across five databases to identify studies that have investigated the effects of maltreatment on the language dimensions of vocabulary and grammar.
Background: Children with maltreatment histories demonstrate weaker reading abilities compared to their peers. However, the differential processes driving this effect remain unclear. Prior studies focused on social and behavioral factors explaining this effect, yet reading research has shown that one's ability to comprehend written text is driven by a set of underlying dynamic and interactive cognitive abilities.
View Article and Find Full Text PDFAbstractTo what degree is lifetime success determined by innate individual quality versus external events and random chance, whether success is measured by lifetime reproductive output, life span, years that a tree spends in the canopy, or some other measure? And how do external events and chance interact with development (survival and growth) to drive success? To answer these questions, we extend our earlier age partitioning of luck in lifetime outcomes in two ways: we incorporate effects of external environmental variation, and we subdivide demographic luck into contributions from survival and growth. Applying our methods to four case studies, we find that luck in survival, in growth, or in environmental variation can all be the dominant driver of success, depending on life history, but variation in individual quality remains a lesser driver. Luck in its various forms is most important at very early ages and again close to the time when individuals typically first begin to be successful (e.
View Article and Find Full Text PDFStatement Of Problem: The second most common biological complication in fixed prosthodontics is loss of pulp vitality, which may lead to restoration loss. While reasons for loss of pulp vitality are unclear, 2 potential contributing factors, duration of the interim restoration and operator experience, have not been fully investigated.
Purpose: The purpose of this retrospective study was to investigate whether the duration of the interim restoration or the experience of the dentist was correlated with loss of pulp vitality.
Pathogen transport by biotic or abiotic processes (e.g. mechanical vectors, wind, rain) can increase disease transmission by creating more opportunities for host exposure.
View Article and Find Full Text PDFCollective behaviour is common in bacteria, plants and animals, and therefore occurs across ecosystems, from biofilms to cities. With collective behaviour, social interactions among individuals propagate to affect the behaviour of groups, whereas group-level responses in turn affect individual behaviour. These cross-scale feedback loops between individuals, populations and their environments can provide fitness benefits, such as the efficient exploitation of uncertain resources, as well as costs, such as increased resource competition.
View Article and Find Full Text PDFA long-standing question in infection biology is why two very similar individuals, with very similar pathogen exposures, may have very different outcomes. Recent experiments have found that even isogenic hosts, given identical inoculations of some bacterial pathogens at suitable doses, can experience very similar initial bacteria proliferation but then diverge to either a lethal infection or a sustained chronic infection with much lower pathogen load. We hypothesized that divergent infection outcomes are a natural result of mutual negative feedbacks between pathogens and the host immune response.
View Article and Find Full Text PDFAbstractOver the course of individual lifetimes, luck usually explains a large fraction of the between-individual variation in life span or lifetime reproductive output (LRO) within a population, while variation in individual traits or "quality" explains much less. To understand how, where in the life cycle, and through which demographic processes luck trumps trait variation, we show how to partition by age the contributions of luck and trait variation to LRO variance and how to quantify three distinct components of luck. We apply these tools to several empirical case studies.
View Article and Find Full Text PDFSelecting among competing statistical models is a core challenge in science. However, the many possible approaches and techniques for model selection, and the conflicting recommendations for their use, can be confusing. We contend that much confusion surrounding statistical model selection results from failing to first clearly specify the purpose of the analysis.
View Article and Find Full Text PDFPande et al. (2020) point out that persistence time can decrease even as invader growth rates (IGRs) increase, which potentially undermines modern coexistence theory. However, because persistence time increases rapidly with system size only when IGR > 0, to understand how any real community persists, we should first identify the mechanisms producing positive IGR.
View Article and Find Full Text PDFMany parasites infect multiple species and persist through a combination of within- and between-species transmission. Multispecies transmission networks are typically constructed at the species level, linking two species if any individuals of those species interact. However, generalist species often consist of specialized individuals that prefer different subsets of available resources, so individual- and species-level contact networks can differ systematically.
View Article and Find Full Text PDFWhen traits affecting species interactions evolve rapidly, ecological dynamics can be altered while they occur. These eco-evolutionary dynamics have been documented repeatedly in laboratory and mesocosm experiments. We show here that they are also important for understanding community functioning in a natural ecosystem.
View Article and Find Full Text PDFWe use integral projection models (IPMs) and individual-based simulations to study the evolution of genetic variance in two monocarpic plant systems. Previous approaches combining IPMs with an adaptive dynamics-style invasion analysis predicted that genetic variability in the size threshold for flowering will not be maintained, which conflicts with empirical evidence. We ask whether this discrepancy can be resolved by making more realistic assumptions about the underlying genetic architecture, assuming a multilocus quantitative trait in an outcrossing diploid species.
View Article and Find Full Text PDF