While sulfoximines are nowadays a well established functional group for medicinal chemistry, the properties of sulfilimines are significantly less well studied, and no sulfilimine has progressed to the clinic to date. In this account, the physicochemical and in vitro properties of sulfilimines are reported and compared to those of sulfoximines and other more traditional functional groups. Furthermore, the impact on the physicochemical and in vitro properties of real drug scaffolds is studied in two series of sulfilimine-containing analogs of imatinib and hNE inhibitors.
View Article and Find Full Text PDFA Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.
View Article and Find Full Text PDFThe synthesis of sterically congested amides was accomplished via Cp*Co(III)-catalyzed sequential C-H bond addition to 1,3-dienes followed by aminocarbonylation with isocyanates, a coupling partner that had never been utilized in sequential C-H bond addition reactions. A variety of C-H bond reactants, internally substituted dienes, and aromatic isocyanates provided secondary amide products incorporating α-all-carbon quaternary centers. The conversion of the amide products to other useful compound classes was also demonstrated.
View Article and Find Full Text PDFA two-step, diversity-building sequence to prepare monodehydro-diketopiperazines from readily accessible materials is reported. Rh(III)-catalyzed, amine-directed N-H functionalization of a variety of α-amino amides with a diazophosphonate ester and subsequent cyclization gives phosphonate-substituted diketopiperazines. A Horner-Wadsworth-Emmons reaction then provides monodehydro-diketopiperazines with high -alkene selectivity.
View Article and Find Full Text PDFWe report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses sU metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.
View Article and Find Full Text PDFThe Rh(II)-catalyzed enantioselective -alkylation of sulfenamides with α-amide diazoacetates at 1 mol % catalyst loading to obtain sulfilimines in high yields and enantiomeric ratios of up to 99:1 is reported. The enantioenriched sulfilimine products incorporate versatile amide functionality poised for further elaboration to diverse sulfoximines with multiple stereogenic centers, including by highly diastereoselective sulfilimine and sulfoximine α-alkylation with alkylating agents and epoxides and by interconversion of the amide to --butanesulfinyl aldimines, followed by diastereoselective additions.
View Article and Find Full Text PDFStereoselective α-amino C-H epimerization of exocyclic amines is achieved via photoredox catalyzed, thiyl-radical mediated, reversible hydrogen atom transfer to provide thermodynamically controlled anti/syn isomer ratios. The method is applicable to different substituents and substitution patterns about aminocyclopentanes, aminocyclohexanes, and a -Boc-3-aminopiperidine. The method also provided efficient epimerization for primary, alkyl and (hetero)aryl secondary, and tertiary exocyclic amines.
View Article and Find Full Text PDFA general one-pot approach to diverse N-acylsulfenamides from a common S-phenethylsulfenamide starting material is reported. This approach was demonstrated by C-S bond formation utilizing commercially abundant (hetero)aryl iodides and boronic acids to provide sulfilimine intermediates that undergo thermal elimination of styrene. In contrast, all prior approaches to N-acylsulfenamides rely on thiol inputs to introduce sulfenamide S-substituents.
View Article and Find Full Text PDFSulfur-(hetero)arylation of sulfenamides with commercially abundant (hetero)aryl iodides by Ullmann-type coupling with inexpensive copper(I) iodide as the catalyst is reported. A broad scope of reaction inputs was demonstrated, including both aryl and alkyl sulfenamides and highly sterically hindered aryl and 5- and 6-membered ring heteroaryl iodides. Relevant to many bioactive high oxidation state sulfur compounds, the (hetero)arylation of -methyl sulfenamides is reported, including for complex aryl iodides.
View Article and Find Full Text PDFUnprotected, α,β-disubstituted tryptamines and phenethylamines are obtained by a one-pot, metal-free sequence that proceeds by the formation of aziridinium salts followed by Friedel-Crafts reaction with electron-rich (hetero)arenes. Both steps are facilitated by hexafluoroisopropanol as the solvent. The one-pot sequence was effective for diversely substituted indoles and 1,3,5-trimethoxybenzene, for cyclic and acyclic alkenes, and proceeded in a stereospecific fashion for both ()- and ()-1,2-disubstituted alkenes.
View Article and Find Full Text PDFAll carbon α-quaternary aldehydes are prepared Co(iii)-catalysed sequential C-H bond addition to dienes and acetic formic anhydride, representing a rare example of intermolecular carboformylation. A wide range of internally substituted dienes containing diverse functionality can be employed in this reaction, affording complex α-quaternary aldehydes that would not be accessible hydroformylation approaches. Mechanistic investigations, including control reactions and deuterium labeling studies, establish a catalytic cycle that accounts for formyl group introduction with an uncommon 1,3-addition selectivity to the conjugated diene.
View Article and Find Full Text PDFWe report a photocatalyzed epimerization of morpholines and piperazines that proceeds by reversible hydrogen atom transfer (HAT) and provides an efficient strategy for editing the stereochemical configurations of these saturated nitrogen heterocycles, which are prevalent in drugs. The more stable morpholine and piperazine isomers are obtained from the more synthetically accessible but less stable stereoisomers, and a broad scope is demonstrated in terms of substitution patterns and functional group compatibility. The observed distributions of diastereomers correlate well with the relative energies of the diastereomer pairs as determined by density functional theory (DFT) calculations.
View Article and Find Full Text PDFThere is considerable interest in screening ultralarge chemical libraries for ligand discovery, both empirically and computationally. Efforts have focused on readily synthesizable molecules, inevitably leaving many chemotypes unexplored. Here we investigate structure-based docking of a bespoke virtual library of tetrahydropyridines-a scaffold that is poorly sampled by a general billion-molecule virtual library but is well suited to many aminergic G-protein-coupled receptors.
View Article and Find Full Text PDFSulfoximines are increasingly incorporated in agrochemicals and pharmaceuticals, with the two enantiomers of chiral sulfoximines often having profoundly different binding interactions with biomolecules. Therefore, their application to drug discovery and development requires the challenging preparation of single enantiomers rather than racemic mixtures. Here, we report a general and fundamentally new asymmetric synthesis of sulfoximines.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) phosphatase 5 (MKP5) is responsible for regulating the activity of the stress-responsive MAPKs and has been put forth as a potential therapeutic target for a number of diseases, including dystrophic muscle disease a fatal rare disease which has neither a treatment nor cure. In previous work, we identified Compound 1 (3,3-dimethyl-1-((9-(methylthio)-5,6-dihydrothieno[3,4-h]quinazolin-2-yl)thio)butan-2-one) as the lead compound of a novel class of MKP5 inhibitors. In this work, we explore the structure-activity relationship for inhibition of MKP5 through modifications to the scaffold and functional groups present in 1.
View Article and Find Full Text PDFMost known methods to access δ-lactams with stereogenic centers at the α- and β-positions are highly selective for the contra-thermodynamic diastereomer, typically hydrogenation of the corresponding pyridinones or quinolinones. We describe here the development of a photoredox-mediated hydrogen atom transfer (HAT) approach for the epimerization of δ-lactams to access the more stable diastereomers from the contra-thermodynamic isomers. The reaction displays broad functional group compatibility, including acid, ester, 1°, 2° and 3° amide, carbamate, and pyridyl groups, and was effective for a range of differently substituted monocyclic and bicyclic lactams.
View Article and Find Full Text PDFSequential multicomponent C-H bond addition is a powerful approach for the rapid, modular generation of molecular complexity in a single reaction. In this approach, C-H bonds are typically added across π-bonds or π-bond isosteres, followed by subsequent coupling to another type of functionality, thereby forming two σ-bonds in a single reaction sequence. Many sequential C-H bond addition reactions have been developed to date, including additions across both conjugated and isolated π-systems followed by coupling with reactants such as carbonyl compounds, cyanating reagents, aminating reagents, halogenating reagents, oxygenating reagents, and alkylating reagents.
View Article and Find Full Text PDFAn efficient and stereoselective Co -catalyzed sequential C-H bond addition to 1,3-enynes and aldehydes is disclosed. This transformation represents the first example of sequential C-H bond additions to 1,3-enynes and a second coupling partner and provides the first example of preparing allenes by C-H bond addition to 1,3-enynes. A wide range of aldehydes, C-H bond substrates and 1,3-enynes with large substituents on the alkynes are effective substrates.
View Article and Find Full Text PDF