Objective: To develop a natural language processing application capable of automatically identifying benign gallbladder diseases that require surgery, from radiology reports.
Materials And Methods: We developed a text classifier to classify reports as describing benign diseases of the gallbladder that do or do not require surgery. We randomly selected 1,200 reports describing the gallbladder from our database, including different modalities.
Objectives: Performing autopsies in a pandemic scenario is challenging, as the need to understand pathophysiology must be balanced with the contamination risk. A minimally invasive autopsy might be a solution. We present a model that combines radiology and pathology to evaluate postmortem CT lung findings and their correlation with histopathology.
View Article and Find Full Text PDFBackground: Aerobic exercise (AE) combined with pharmacotherapy is known to reduce depressive symptoms; however, studies have not focused on long-term AE for volumetric changes of brain regions (amygdala, thalamus, and nucleus accumbens [NAcc]) linked to the control of affective responses and hopelessness in individuals with major depression (MD). In addition, AE with motor complexity (AEMC) would be more effective than AE in causing brain plasticity. We compared the effects of 24 weeks of AE and AEMC combined with pharmacotherapy on clinical and volumetric outcomes in individuals with MD.
View Article and Find Full Text PDFBackground: Brain abnormalities are a concern in COVID-19, so we used minimally invasive autopsy (MIA) to investigate it, consisting of brain 7T MR and CT images and tissue sampling via transethmoidal route with at least three fragments: the first one for reverse transcription polymerase chain reaction (RT-PCR) analysis and the remaining fixed and stained with hematoxylin and eosin. Two mouse monoclonal anti-coronavirus (SARS-CoV-2) antibodies were employed in immunohistochemical (IHC) reactions.
Results: Seven deceased COVID-19 patients underwent MIA with brain MR and CT images, six of them with tissue sampling.
Clinics (Sao Paulo)
December 2021
Background: Graph theory (GT) is a mathematical field that analyses complex networks that can be applied to neuroimaging to quantify brain's functional systems in Parkinson's disease (PD) and essential tremor (ET).
Objectives: To evaluate the functional connectivity (FC) measured by the global efficiency (GE) of the motor network in PD and compare it to ET and healthy controls (HC), and correlate it to clinical parameters.
Methods: 103 subjects (54PD, 18ET, 31HC) were submitted to structural and functional MRI.
Objective: To evaluate the correlation of morphological criteria of the cecal appendix using computed tomography (CT) and the possible risk of developing acute appendicitis.
Materials And Methods: Cases were defined as patients with surgically confirmed acute appendicitis who had undergone CT at least twice: at diagnosis and at least one month prior. Controls were defined as emergency patients with abdominal pain who had undergone abdominal CT that excluded acute appendicitis and had also undergone CT at least one month before.
Purpose: Filamin A (FLNA) expression is related to dopamine receptor type 2 (DRD2) expression in prolactinomas. Nevertheless, in corticotrophinomas, there are few studies about DRD2 expression and no data on FLNA. Therefore, we evaluated FLNA and DRD2 expression in corticotrophinomas and their association with tumor characteristics.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder that affects motor skills and cognition. As brain structure and function are compromised, functional magnetic resonance imaging (fMRI) can be a helpful tool to further investigate how intrinsic connectivity is impaired on the disease. The precuneus and medial prefrontal cortex (mPFC) are hub regions involved on the default mode network (DMN), a system that is active during rest and related to cognitive processes.
View Article and Find Full Text PDFKnowledge of brain correlates of postural control is limited by the technical difficulties in performing controlled experiments with currently available neuroimaging methods. Here we present a system that allows the measurement of anticipatory postural adjustment of human legs to be synchronized with the acquisition of functional magnetic resonance imaging data. The device is composed of Magnetic Resonance Imaging (MRI) compatible force sensors able to measure the level of force applied by both feet.
View Article and Find Full Text PDFObjectives: Our goal was to estimate the diagnostic accuracy of substantia nigra fractional anisotropy (SN-FA) for Parkinson's disease (PD) diagnosis in a sample similar to the clinical setting, including patients with essential tremor (ET) and healthy controls (HC). We also performed a systematic review and meta-analysis to estimate mean change in SN-FA induced by PD and its diagnostic accuracy.
Methods: Our sample consisted of 135 subjects: 72 PD, 21 ET and 42 HC.
Objective: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy.
Methods: Two groups of male Wistar rats were used for the tumor induction model. In the first group (n=3), the tumors were induced via the injection of SPION-labeled C6 cells.
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect.
View Article and Find Full Text PDFAmong nonmotor symptoms observed in Parkinson's disease (PD) dysfunction in the visual system, including hallucinations, has a significant impact in their quality of life. To further explore the visual system in PD patients we designed two fMRI experiments comparing 18 healthy volunteers with 16 PD patients without visual complaints in two visual fMRI paradigms: the flickering checkerboard task and a facial perception paradigm. PD patients displayed a decreased activity in the primary visual cortex (Broadmann area 17) bilaterally as compared to healthy volunteers during flickering checkerboard task and increased activity in fusiform gyrus (Broadmann area 37) during facial perception paradigm.
View Article and Find Full Text PDFDepression is the most frequent psychiatric disorder in Parkinson's disease (PD). Although evidence suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD.
View Article and Find Full Text PDFRecent studies have demonstrated that spatial patterns of fMRI BOLD activity distribution over the brain may be used to classify different groups or mental states. These studies are based on the application of advanced pattern recognition approaches and multivariate statistical classifiers. Most published articles in this field are focused on improving the accuracy rates and many approaches have been proposed to accomplish this task.
View Article and Find Full Text PDFThe mechanisms underlying the effects of antidepressant treatment in patients with Parkinson's disease (PD) are unclear. The neural changes after successful therapy investigated by neuroimaging methods can give insights into the mechanisms of action related to a specific treatment choice. To study the mechanisms of neural modulation of repetitive transcranial magnetic stimulation (rTMS) and fluoxetine, 21 PD depressed patients were randomized into only two active treatment groups for 4 wk: active rTMS over left dorsolateral prefrontal cortex (DLPFC) (5 Hz rTMS; 120% motor threshold) with placebo pill and sham rTMS with fluoxetine 20 mg/d.
View Article and Find Full Text PDFDeep brain stimulation (DBS) is a relatively novel treatment in advanced Parkinson's disease (PD). Functional magnetic resonance imaging (fMRI) is a useful technique for examining the effects of DBS both within the basal ganglia and its cortical connectivity. There are technical difficulties in imaging patients with PD, and the DBS itself can generate image artifacts.
View Article and Find Full Text PDFRecent advances in neuroimaging techniques have provided precise spatial localization of brain activation applied in several neuroscience subareas. The development of functional magnetic resonance imaging (fMRI), based on the BOLD signal, is one of the most popular techniques related to the detection of neuronal activation. However, understanding the interactions between several neuronal modules is also an important task, providing a better comprehension about brain dynamics.
View Article and Find Full Text PDFObjective: The purpose of this study was to validate diffusion-weighted magnetic resonance imaging in the prediction of the evolutive course of brain edema and to establish its pathophysiologic presence in patients with eclampsia/severe preeclampsia.
Study Design: Seventeen patients with a clinical diagnosis of severe eclampsia/preeclampsia and T2 hyperintense brain lesions on routine magnetic resonance imaging were evaluated at hospital admission and 8 weeks later.
Results: Brain edema was reversible in 13 patients and irreversible in 4 patients, as indicated on follow-up magnetic resonance imaging.