Publications by authors named "Ellis S Kempner"

To determine the radiation sensitivity of galactose oxidase, a 68 kDa monomeric enzyme containing a mononuclear copper ion coordinated with an unusually stable cysteinyl-tyrosine (Cys-Tyr) protein free radical. Both active enzyme and reversibly rendered inactive enzyme were irradiated in the frozen state with high-energy electrons. Surviving polypeptides and surviving enzyme activity were analyzed by radiation target theory giving the radiation sensitive mass for each property.

View Article and Find Full Text PDF

Endothelial lipase (EL) is a member of a subfamily of lipases that act on triglycerides and phospholipids in plasma lipoproteins, which also includes lipoprotein lipase and hepatic lipase. EL has a tropism for high density lipoprotein, and its level of phospholipase activity is similar to its level of triglyceride lipase activity. Inhibition or loss-of-function of EL in mice results in an increase in high density lipoprotein cholesterol, making it a potential therapeutic target.

View Article and Find Full Text PDF

Hyaluronan (HA), a linear polysaccharide composed of beta1,3-GlcNAc-beta1,4-GlcUA repeats, is found in the extracellular matrix of vertebrate tissues as well as the capsule of several pathogenic bacteria. All known HA synthases (HASs) are dual-action glycosyltransferases that catalyze the addition of two different sugars from UDP-linked precursors to the growing HA chain. The bacterial hyaluronan synthase, PmHAS from Gram-negative Pasteurella multocida, is a 972-residue membrane-associated protein.

View Article and Find Full Text PDF

The polysialyltransferase of Escherichia coli K92 catalyzes the transfer of sialic acid from CMP-sialic acid to a growing chain of polysialic acid at the nonreducing end. The enzyme encoded by the neuS gene is membrane-associated and has been suggested to be organized within a complex of several proteins encoded by the K92 gene cluster. Attempts to prepare a soluble active NeuS enzyme have been unsuccessful.

View Article and Find Full Text PDF

Frozen solutions of low molecular weight DNA template/primer complexes, in the absence and presence of HIV-1 reverse transcriptase, were irradiated with high-energy electrons. Molecules that survived the radiation exposure were quantified and analyzed using radiation target theory. Transfer of radiation-deposited energy was observed by the damage caused.

View Article and Find Full Text PDF