Publications by authors named "Ellis Rea"

A significant portion of patients suffering from major depression remains refractory to available antidepressant treatment strategies. This highlights the need for a better understanding of the underlying neuropathology in order to develop rationale-based treatments. Here we aimed to further characterize neurobiological abnormalities of the Flinders Sensitive Line (FSL) rat model of depression.

View Article and Find Full Text PDF

The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2(hum)), cortico-basal ganglia circuits are specifically affected.

View Article and Find Full Text PDF

Background: One of the two core symptoms of major depression (MD), whether uni- or bipolar, is the inability to experience pleasure, suggested to be triggered by dysregulation within the brain reward system. In recent years, deep brain stimulation (DBS) has evolved as a potential tool to modulate pathological neural activity; stimulation of the subgenual cingulate (Cg25) has been shown to reduce depressive symptoms, including anhedonia. In rodents, the ventromedial prefrontal cortex (vmPFC) is likely to represent the correlate of Cg25 and accordingly, stimulation of vmPFC reduces anhedonia-like behavior in rats.

View Article and Find Full Text PDF

The underlying neurobiology of addictive or repetitive behaviours, such as obsessive-compulsive disorder (OCD), involves dopaminergic dysregulation. While addictive behaviour depends strongly on mesolimbocortical dopaminergic responses, repetitive behaviours have been associated with dopaminergic dysregulation in the basal ganglia-thalamo-cortical circuitry. The present study investigates differences in brain stimulation reward in rats with quinpirole-induced compulsive checking behaviour, in order to examine if deficits in reward processing are also relevant for OCD.

View Article and Find Full Text PDF