Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor α (mERα)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mERα signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mERα signaling, and wildtype (WT) littermates with physiological (0.
View Article and Find Full Text PDFEstrogens via estrogen receptor alpha (ERα) genomic and nongenomic signaling can influence plasticity processes in numerous brain regions. Using mice that express nuclear only ERα (NOER) or membrane only ERα (MOER), this study examined the effect of receptor compartmentalization on the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus. The absence of nuclear and membrane ERα expression impacted females but not males in these two brain areas.
View Article and Find Full Text PDFEstrogen acting through estrogen receptor β (ERβ) has been shown to oppose the stimulation of cardiac myocytes and cardiac fibroblasts that results in cardiac hypertrophy and fibrosis. Previous work has implicated signal transduction from ERβ as being important to the function of estrogen in this regard. Here we address whether membrane ERβ is sufficient to oppose key mechanisms by which angiotensin II (AngII) stimulates cardiac cell pathology.
View Article and Find Full Text PDFImportance: SARS-CoV-2 entry requires the TMPRSS2 cell surface protease. Antiandrogen therapies reduce expression of TMPRSS2.
Objective: To determine if temporary androgen suppression induced by degarelix improves clinical outcomes of inpatients hospitalized with COVID-19.
Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To determine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradiol (E2), and various tissues were evaluated.
View Article and Find Full Text PDFRapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts.
View Article and Find Full Text PDFEstrogen signaling through the main estrogen receptor, estrogen receptor 1 (ESR1; also known as ERα), is essential for normal female and male reproductive function. Historically, studies of estrogen action have focused on the classical genomic pathway. Although this is clearly the major pathway for steroid hormone actions, these hormones also signal through rapid non-classical effects involving cell membrane actions.
View Article and Find Full Text PDFMesenchymal stem cells can differentiate into mature chondrocytes, osteoblasts, and adipocytes. Excessive and dysfunctional visceral adipocytes increase upon menopause and importantly contribute to altered metabolism in postmenopausal women. We previously showed both plasma membrane and nuclear estrogen receptors alpha (ERα) with endogenous estrogen are required to suppress adipogenesis in vivo.
View Article and Find Full Text PDFSevere outcomes and death from the novel coronavirus disease 2019 (COVID-19) appear to be characterized by an exaggerated immune response with hypercytokinemia leading to inflammatory infiltration of the lungs and acute respiratory distress syndrome. Risk of severe COVID-19 outcomes is consistently lower in women than men worldwide, suggesting that female biological sex is instrumental in protection. This mini-review discusses the immunomodulatory and anti-inflammatory actions of high physiological concentrations of the steroids 17β-estradiol (E2) and progesterone (P4).
View Article and Find Full Text PDFEnhancer of zeste homolog 2 (EZH2) is a rate-limiting catalytic subunit of a histone methyltransferase, polycomb repressive complex, which silences gene activity through the repressive histone mark H3K27me3. EZH2 is critical for epigenetic effects of early estrogen treatment, and may be involved in uterine development and pathologies. We investigated EZH2 expression, regulation, and its role in uterine development/function.
View Article and Find Full Text PDFBoth membrane and nuclear fractions of estrogen receptor 1 (ESR1) mediate 17β-estradiol (E2) actions. Mice expressing nuclear (n)ESR1 but lacking membrane (m)ESR1 (nuclear-only estrogen receptor 1 [NOER] mice) show reduced E2 responsivity and reproductive abnormalities culminating in adult male and female infertility. Using this model, we investigated whether reproductive pathologies caused by the synthetic estrogen diethylstilbestrol (DES) are mitigated by mESR1 ablation.
View Article and Find Full Text PDFAndrogens and estrogens are known to be critical regulators of mammalian physiology and development. While these two classes of steroids share similar structures (in general, estrogens are derived from androgens via the enzyme aromatase), they subserve markedly different functions via their specific receptors. In the past, estrogens such as estradiol were thought to be most important in the regulation of female biology, while androgens such as testosterone and dihydrotestosterone were believed to primarily modulate development and physiology in males.
View Article and Find Full Text PDFObjective: The endogenous estrogen 17β-estradiol (E2) promotes metabolic homeostasis in premenopausal women. In a mouse model of post-menopausal metabolic syndrome, we reported that estrogens increased energy expenditure, thus preventing estrogen deficiency-induced adiposity. Estrogens' prevention of fat accumulation was associated with increased serum concentrations of fibroblast growth factor 21 (FGF21), suggesting that FGF21 participates in estrogens' promotion of energy expenditure.
View Article and Find Full Text PDFEstrogens favor glucose homeostasis primarily through the estrogen receptor-α (ERα), but the respective importance of nuclear ERα (NOER) and membrane ERα (MOER) pools to glucose homeostasis are unknown. We studied glucose homeostasis, insulin secretion, and insulin sensitivity in male and female mice expressing either the NOER or the MOER. Male and female MOER mice exhibited fasting and fed hyperglycemia and glucose intolerance.
View Article and Find Full Text PDFMen are generally superior to women in remembering spatial relationships, whereas the reverse holds for semantic information, but the neurobiological bases for these differences are not understood. Here we describe striking sexual dimorphism in synaptic mechanisms of memory encoding in hippocampal field CA1, a region critical for spatial learning. Studies of acute hippocampal slices from adult rats and mice show that for excitatory Schaffer-commissural projections, the memory-related long-term potentiation (LTP) effect depends upon endogenous estrogen and membrane estrogen receptor α (ERα) in females but not in males; there was no evident involvement of nuclear ERα in females, or of ERβ or GPER1 (G-protein-coupled estrogen receptor 1) in either sex.
View Article and Find Full Text PDFConjugated estrogens (CE) delay the onset of type 2 diabetes (T2D) in postmenopausal women, but the mechanism is unclear. In T2D, the endoplasmic reticulum (ER) fails to promote proinsulin folding and, in failing to do so, promotes ER stress and β cell dysfunction. We show that CE prevent insulin-deficient diabetes in male and in female Akita mice using a model of misfolded proinsulin.
View Article and Find Full Text PDFEstrogen receptors (ER) alpha and beta as well as many other steroid receptors are found both within the nucleus and outside the nucleus. This includes extra-nuclear receptors in many organelles, including mitochondria, endoplasmic reticulum, cytosolic endosomes, and membrane lipid rafts, such as caveolae. The functions of these receptors in the various extra-nuclear cell organelles are not well described, but progress for understanding steroid receptor signaling from the membrane has advanced.
View Article and Find Full Text PDFMaintaining a healthy, anti-hypertrophic state in the heart prevents progression to cardiac failure. In humans, angiotensin II (AngII) indirectly and directly stimulates hypertrophy and progression, while estrogens acting through estrogen receptor beta (ERβ) inhibit these AngII actions. The KLF15 transcription factor has been purported to provide anti-hypertrophic action.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
December 2016
Steroid hormone receptors mediate numerous crucial biological processes and are classically thought to function as transcriptional regulators in the nucleus. However, it has been known for more than 50 years that steroids evoke rapid responses in many organs that cannot be explained by gene regulation. Mounting evidence indicates that most steroid receptors in fact exist in extranuclear cellular pools, including at the plasma membrane.
View Article and Find Full Text PDFCardiac fibrosis evolves from the cardiac hypertrophic state. In this respect, estrogen and estrogen receptor beta (ERβ) inhibit the effects of cardiac hypertrophic peptides that also stimulate fibrosis. Here we determine details of the anti-fibrotic functions of ERβ.
View Article and Find Full Text PDFEstrogen receptor 1 (ESR1) mediates major reproductive functions of 17β-estradiol (E2). Male Esr1 knockout (Esr1KO) mice are infertile due to efferent ductule and epididymal abnormalities. The majority of ESR1 is nuclear/cytoplasmic; however, a small fraction is palmitoylated at cysteine 451 in mice and localized to cell membranes, in which it mediates rapid E2 actions.
View Article and Find Full Text PDFEstrogen and estrogen receptor (ER)-α suppress visceral fat development through actions in several organs via unclear mechanisms that we sought to identify. Using mice that express only nuclear ER-α [nuclear-only ER-α (NOER) mice] or plasma membrane ER-α [membrane-only ER-α (MOER) mice], we found that 10-wk-old mice that lacked either receptor pool showed extensive abdominal visceral fat deposition and weight gain compared with wild-type (WT) mice. Differentiation of cultured bone marrow stem cells (BMSCs) into the adipocyte lineage was suppressed by 17-β-estradiol (E2) in WT female mice but not in NOER or MOER mice.
View Article and Find Full Text PDFAnnu Rev Med
September 2015
Steroid hormones are produced throughout the phylogenetic tree, from plants to mammals. In the past 40 years, steroid receptors localized to the nucleus have been recognized as being important to mediating steroid action in many organs. This action mainly arises from the regulation of key genes that are important for organ development and function.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2014
Steroid receptors exist and function in multiple compartments of cells in most organs. Although the functions and nature of some of these receptors is being defined, important aspects of receptor localization and signaling to physiology and pathophysiology have been identified. In particular, extranuclear sex steroid receptors have been found in many normal cells and in epithelial tumors, where they enact signal transduction that impacts both nongenomic and genomic functions.
View Article and Find Full Text PDF