In this manuscript, we present two 'Bionic Clicker' systems, the first designed to demonstrate electromyography (EMG) based control systems for educational purposes and the second for research purposes. EMG based control systems pick up electrical signals generated by muscle activation and use these as inputs for controllers. EMG controllers are widely used in prosthetics to control limbs.
View Article and Find Full Text PDFThe production of accurate and independent images of the changes in concentration of oxyhemoglobin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infrared light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and system-specific factors such as laser source power and detector sensitivity. We describe the application of a data-driven approach to optimum wavelength selection for the second generation of University College London's multichannel, time-domain optical tomography system (MONSTIR II).
View Article and Find Full Text PDFWe detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution.
View Article and Find Full Text PDF