Publications by authors named "Elliot W Jackson"

Stable transgenesis is a transformative tool in model organism biology. Although the sea urchin is one of the oldest animal models in cell and developmental biology, studies in this animal have largely relied on transient manipulation of wild animals, without a strategy for stable transgenesis. Here, we build on recent progress to develop a more genetically tractable sea urchin species, Lytechinus pictus, and establish a robust transgene integration method.

View Article and Find Full Text PDF

Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea).

View Article and Find Full Text PDF

A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the cause of sea star wasting syndrome and found a new densovirus named AfaDV, which shares similarities with the previously known SSaDV but was not present in sea stars from the North American Atlantic Coast.
  • * AfaDV was detected in three species of sea stars along the Atlantic Coast and showed a high prevalence (over 80%) among sampled individuals, impacting various tissues.
  • * The findings suggest that AfaDV is not linked to the sea star wasting syndrome, as it appears to be a normal part of the sea stars' microbiome, not an indicator of illness.*
View Article and Find Full Text PDF

Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats.

View Article and Find Full Text PDF

Sea stars are among the most important predators in benthic ecosystems worldwide which is partly attributed to their unique gastrointestinal features and feeding behaviors. Despite their ecological importance, the microbiome of these animals and its influence on adult host health and development largely remains unknown. To begin to understand such interactions we sought to understand what bacteria are associated with these animals, how the microbiome is partitioned across regions of the body and how seawater influences their microbiome.

View Article and Find Full Text PDF

Decades of research have demonstrated the crucial importance of viruses in freshwater ecosystems. However, few studies have focused on the seasonal dynamics and potential hosts of RNA viruses. We surveyed microbial-sized (i.

View Article and Find Full Text PDF

Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses.

View Article and Find Full Text PDF