We present an investigation into the transferability of pseudopotentials (PPs) with a nonlinear core correction (NLCC) using the Goedecker, Teter, and Hutter (GTH) protocol across a range of pure GGA, meta-GGA and hybrid functionals, and their impact on thermochemical and non-thermochemical properties. The GTH-NLCC PP for the PBE density functional demonstrates remarkable transferability to the PBE0 and ωB97X-V exchange-correlation functionals, and relative to no NLCC, improves agreement significantly for thermochemical benchmarks compared to all-electron calculations. On the other hand, the B97M-rV meta-GGA functional performs poorly with the PBE-derived GTH-NLCC PP, which is mitigated by reoptimizing the NLCC parameters for this specific functional.
View Article and Find Full Text PDFA student-led mathematics bootcamp has been designed and implemented to help foster community building, improve confidence in mathematical skills, and provide mathematical resources for incoming physical chemistry doctoral students. The bootcamp is held immediately before the start of the first semester of graduate school and uses an active learning approach to review and practice undergraduate-level mathematics problems over 5 days in small student groups. This work includes the development and presentation of a new, publicly available mathematics curriculum for the bootcamp on select mathematics topics, including calculus, linear algebra, functions, differential equations, statistics, and coding in Python, aiming at improving students' confidence and learning experiences in graduate quantum mechanics and statistical physics courses.
View Article and Find Full Text PDFThe pseudopotential (PP) approximation is one of the most common techniques in computational chemistry. Despite its long history, the development of custom PPs has not tracked with the explosion of different density functional approximations (DFAs). As a result, the use of PPs with exchange/correlation models for which they were not developed is widespread, although this practice is known to be theoretically unsound.
View Article and Find Full Text PDFThe discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs.
View Article and Find Full Text PDFDespite the widespread use of copper catalysis for the formation of C-C bonds, debate about the mechanism persists. Reductive elimination from Cu(III) is often invoked as a key step, yet examples of its direct observation from isolable complexes remain limited to only a few examples. Here, we demonstrate that incorporation of bulky mesityl (Mes) groups into the α-positions of a phenanthrene-appended zirconacyclopentadiene, CpZr(2,5-Mes-phenanthro[9,10]C), enables efficient oxidative transmetalation to the corresponding, formal Cu(III) metallacyclopentadiene dimer.
View Article and Find Full Text PDFThis work considers the evaluation of density functional theory (DFT) when comparing against experimental observations of CO binding trends on the strong binding Pt(111) and intermediate binding Cu(111) and for weak binding Ag(111) and Au(111) surfaces important in electrocatalysis. By introducing thermal fluctuations using appropriate statistical mechanical NVT and NPT ensembles, we find that the RPBE and B97M-rV DFT functionals yield qualitatively better metal surface strain trends and CO enthalpies of binding for Cu(111) and Pt(111) than found at 0 K, thereby correcting the overbinding by 0.2 to 0.
View Article and Find Full Text PDFA complete set of Goedecker, Teter, and Hutter (GTH) norm-conserving pseudopotentials (PPs) have been optimized, in conjunction with molecular optimized (MOLOPT) basis sets, for both the B97M-rV and ωB97X-V density functionals for members of the main-group elements and 3d and noble metals. The resulting small-core PPs and corresponding DZVP, TZVP, and TZV2P basis sets yield notable improvements compared to the original PBE defaults when validated against all electron calculations for redox reaction energies and geometries, binding energies, and vibrational Stark effects for metal monocarbonyls in vacuum. Further validation of the optimized PP/MOLOPT basis set combinations was performed using ab initio molecular dynamics simulations and shows greatly improved agreement with experimental trends for metal surface relaxations and the adsorption behavior of CO on solid metal surfaces.
View Article and Find Full Text PDFThis article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods.
View Article and Find Full Text PDFDensity Functional Theory (DFT) is currently the most tractable choice of theoretical model used to understand the mechanistic pathways for electrocatalytic processes such as CO or CO reduction. Here, we assess the performance of two DFT functionals designed specifically to describe surface interactions, RTPSS and RPBE, as well as two popular meta-GGA functionals, SCAN and B97M-rV, that have not been a priori optimized for better interfacial properties. We assess all four functionals against available experimental data for prediction of bulk and bare surface properties on four electrocatalytically relevant metals, Au, Ag, Cu, and Pt, and for binding CO to surfaces of these metals.
View Article and Find Full Text PDFWe report the adiabatic energy decomposition analysis (EDA) of density functional theory (DFT) results, shedding light on the physical content of binding energies and carbon monoxide (CO) frequency (υCO) shifts in select first-row transition metal monocarbonyls (MCOs; M = Ti-, V-, Cr-, Co-, Ni-, Cu-, V, Cr, Mn, Ni, Cu, Zn, Cr+, Mn+, Fe+, Cu+, and Zn+). This approach allows for the direct decomposition of υCO, in contrast to previous studies of these systems. Neutral, anionic, and cationic systems are compared, and our results indicate that the relative importance of electrostatic interactions, intramolecular orbital polarization, and charge transfer can vary significantly with the charge and electron configuration of the metal participating in binding.
View Article and Find Full Text PDFThe methylene amidogen radical (HCN) plays a role in high-energy material combustion and extraterresterial atmospheres. Recent theoretical work has struggled to match experimental assignments for its CN and antisymmetric CH stretching frequencies (ν and ν), which were reported to occur at 1725 and 3103 cm. Herein, we compute the vibrational energy levels of this molecule by extrapolating quadruples-level coupled-cluster theory to the complete basis limit and adding corrections for vibrational anharmonicity.
View Article and Find Full Text PDF