Radiological incidents or terrorist attacks would likely expose civilians and military personnel to high doses of ionizing radiation, leading to the development of acute radiation syndrome. We examined the effectiveness of prophylactic administration of a developmental radiation countermeasure, γ-tocotrienol (GT3), in a total-body irradiation (TBI) mouse model. CD2F1 mice received GT3 24 h prior to 11 Gy cobalt-60 gamma-irradiation.
View Article and Find Full Text PDFRadiation-induced heart disease presents a significant challenge in the event of an accidental radiation exposure as well as to cancer patients who receive acute doses of irradiation as part of radiation therapy. We utilized the spontaneously hypertensive Wistar-Kyoto rat model, previously shown to demonstrate drug-induced cardiomyopathy, to evaluate the acute and long-term effects of sub-lethal total body gamma irradiation at two, four, and fifty-two weeks. We further examined irreversible oxidative protein carbonylation in the heart immediately following irradiation in the normotensive Wistar-Kyoto rat.
View Article and Find Full Text PDFThe aim of this study was to analyze the changes in mouse jejunum protein expression in response to prophylactic administration of two promising tocols, γ-tocotrienol (GT3) and α-tocopherol succinate (TS), as radiation countermeasures before irradiation to elucidate the molecular mechanism(s) of their radioprotective efficacy. Mice were administered GT3 or TS (200 mg kg) subcutaneously 24 h prior to exposure to 11 Gy Co γ-radiation, a supralethal dose for mice. Jejunum was harvested 24 h post-irradiation.
View Article and Find Full Text PDFBackground: Doxorubicin (DOX), an anthracycline therapeutic, is widely used to treat a variety of cancer types and known to induce cardiomyopathy in a time and dose-dependent manner. Postmenopausal and hypertensive females are two high-risk groups for developing adverse effects following DOX treatment. This may suggest that endogenous reproductive hormones can in part suppress DOX-induced cardiotoxicity.
View Article and Find Full Text PDFPLoS Comput Biol
January 2014
Thromboembolic disease is a leading cause of morbidity and mortality worldwide. In the last several years there have been a number of studies attempting to identify mechanisms that stop thrombus growth. This paper identifies a novel mechanism related to formation of a fibrin cap.
View Article and Find Full Text PDFDeep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e.
View Article and Find Full Text PDFA multiscale computational model of thrombus (blood clot) development is extended by incorporating a submodel describing formation of fibrin network through "fibrin elements" representing regions occupied by polymerized fibrin. Simulations demonstrate that fibrin accumulates on the surface of the thrombus and that fibrin network limits growth by reducing thrombin concentrations on the thrombus surface and decreasing adhesivity of resting platelets in blood near thrombus surface. These results suggest that fibrin accumulation may not only increase the structural integrity of the thrombus but also considerably contribute toward limiting its growth.
View Article and Find Full Text PDFAim: The ability of nanoparticles to form larger superstructures of aggregates and agglomerates has been extensively noted in the literature. The in vivo biological impact of these structures, however, has not been assessed. This knowledge gap is especially critical in the safety assessment of nanoparticles to be used for therapeutic purposes.
View Article and Find Full Text PDFTo restrict the loss of blood follow from the rupture of blood vessels, the human body rapidly forms a clot consisting of platelets and fibrin. However, to prevent pathological clotting within vessels as a result of vessel damage, the response must be regulated. Clots forming within vessels (thrombi) can restrict the flow of blood causing damage to tissues in the flow field.
View Article and Find Full Text PDFCardiotoxicity was an unanticipated side effect elicited by the clinical use of imatinib (Imb). This toxicity has been examined in only a limited number of experimental studies. The present study sought, by a variety of approaches, to identify important characteristics of Imb-induced cardiac alterations.
View Article and Find Full Text PDFIn this paper, a new three-dimensional modelling approach is described for studying fluid-viscoelastic cell interaction, the subcellular element Langevin (SCEL) method, with cells modelled by subcellular elements (SCEs) and SCE cells coupled with fluid flow and substrate models by using the Langevin equation. It is demonstrated that: (i) the new method is computationally efficient, scaling as (N) for N SCEs; (ii) cell geometry, stiffness and adhesivity can be modelled by directly relating parameters to experimentally measured values; (iii) modelling the fluid-platelet interface as a surface leads to a very good correlation with experimentally observed platelet flow interactions. Using this method, the three-dimensional motion of a viscoelastic platelet in a shear blood flow was simulated and compared with experiments on tracking platelets in a blood chamber.
View Article and Find Full Text PDFCardiac troponins have proved to be reliable blood biomarkers for identifying a variety of myocardial alterations in humans and animals. Recently, an ultrasensitive cTnI assay (Erenna IA) has been used to demonstrate increases in baseline cTnI resulting from drug-induced myocardial injury in rats, dogs, and monkeys, as well as to document baseline cTnI ranges in Sprague-Dawley (SD) rats. The present study was initiated to use the Erenna cTnI assay to further document baseline cTnI concentrations in normal control animals from multiple strains, including SD, Spontaneous Hypertensive (SHR), Wistar, Wistar-Kyoto (WKY), and Fisher strains.
View Article and Find Full Text PDFIn addition to descriptive biological models, many computational models have been developed for hemostasis/thrombosis that provide quantitative characterization of thrombus development. Simulations using computational models that have been developed for coagulation reactions, platelet activation, and fibrinogen assembly have been shown to be in close agreement with experimental data. Models of processes involved in hemostasis/thrombosis are being integrated to simulate the development of the thrombus simultaneously in time and space.
View Article and Find Full Text PDFChronic inflammation is tightly linked to diseases associated with endothelial dysfunction including aberrant angiogenesis. To better understand the endothelial role in pro-inflammatory angiogenesis, we analyzed signaling pathways in continuously activated endothelial cells, which were either chronically exposed to soluble TNF or the reactive oxygen species (ROS) generating H2O2, or express active transmembrane TNF. Testing in an in vitro capillary sprout formation assay, continuous endothelial activation increased angiogenesis dependent on activation of p38 MAP kinase, NADPH oxidase, and matrix metalloproteinases (MMP).
View Article and Find Full Text PDFA combination of the extended multiscale model, new image processing algorithms, and biological experiments is used for studying the role of Factor VII (FVII) in venous thrombus formation. A detailed submodel of the tissue factor pathway of blood coagulation is introduced within the framework of the multiscale model to provide a detailed description of coagulation cascade. Surface reactions of the extrinsic coagulation pathway on membranes of platelets are studied under different flow conditions.
View Article and Find Full Text PDFThrombus development in mouse mesenteric vessels following laser-induced injury was monitored by high-resolution, near-real-time, two-photon, intravital microscopy. In addition to the use of fluorescently tagged fibrin(ogen) and platelets, plasma was labeled with fluorescently tagged dextran. Because blood cells exclude the dextran in the single plane, blood cells appear as black silhouettes.
View Article and Find Full Text PDFAdipose stromal cells (ASC) are multipotential mesenchymal progenitor cells that are readily induced to undergo adipogenic differentiation, and we have recently demonstrated them to have functional and phenotypic overlap with pericytes lining microvessels in adipose tissues. In this study we addressed the hypothesis that modulation of ASC fate within this perivascular niche can occur via interaction with endothelial cells (EC), which serve to modulate the adipogenic potential of ASC. To this end, we investigated contact as well as paracrine effects of EC on ASC adipogenesis, in two-dimensional coculture and via conditioned medium and analyzed mutual gene expression changes by real-time reverse transcription polymerase chain reaction (PCR).
View Article and Find Full Text PDFThe random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers.
View Article and Find Full Text PDFTwo common procoagulant activities associated with tumors are tissue factor and cancer procoagulant (CP), an activator of coagulation factor X. We have identified a convenient source of CP in transplanted Lobund-Wistar rat PA3 prostate tumors. CP activity was purified from 5 independent transplanted prostate tumors by column chromatography.
View Article and Find Full Text PDFMost tumors, including prostate carcinoma, are heterogeneous mixtures of neoplastic cells and supporting stromal matrix. Attempts to vaccinate as a means to treat or prevent cancer have typically relied on use of a single antigen or cell type. In the case of whole-cell vaccines, clonal populations of cancer cells are grown in culture and harvested for vaccine material.
View Article and Find Full Text PDFA two-dimensional multiscale model is introduced for studying formation of a thrombus (clot) in a blood vessel. It involves components for modelling viscous, incompressible blood plasma; non-activated and activated platelets; blood cells; activating chemicals; fibrinogen; and vessel walls and their interactions. The macroscale dynamics of the blood flow is described by the continuum Navier-Stokes equations.
View Article and Find Full Text PDFThe use of adipose-derived stem/stromal cells (ASCs) for promoting repair of tissues is a promising potential therapy, but the mechanisms of their action are not fully understood. We and others previously demonstrated accelerated reperfusion and tissue salvage by ASCs in peripheral ischemia models and have shown that ASCs secrete physiologically relevant levels of hepatocyte growth factor (HGF) and vascular endothelial growth factor. The specific contribution of HGF to ASC potency was determined by silencing HGF expression.
View Article and Find Full Text PDFCancer Immunol Immunother
August 2007
Vaccination, as an approach to prostate cancer, has largely focused on immunotherapy utilizing specific molecules or allogeneic cells. Such methods are limited by the focused antigenic menu presented to the immune system and by immunotolerance to antigens recognized as "self". To examine if a xenogeneic tissue vaccine could stimulate protective immunity in a human prostate cancer cell line, a vaccine was produced by glutaraldehyde fixation of harvested PAIII prostate cancer cells tumors (GFT cell vaccine) from Lobund-Wistar rats.
View Article and Find Full Text PDF