Med Devices (Auckl)
December 2024
Early detection of neurological deterioration in serious acute brain injury is seen as an important goal to reduce death and disability, but monitoring for neurological deterioration remains challenging. Routine methods, such as neurological examination and brain imaging, often identify brain injuries only after they have progressed to an irreversible stage. Alternate approaches such as invasive brain monitoring, are complex, costly and carry inherent risks.
View Article and Find Full Text PDFNeuroinflammation is a hallmark of hypoxic-ischemic injury and can be characterized by the activation of glial cells and the expression of inflammatory cytokines and chemokines. Interleukin (IL)-1β and tumor necrosis factor (TNF)α are among the best-characterized early response cytokines and are often expressed concurrently. Several types of central nervous system cells secrete IL-1β and TNFα, including microglia, astrocytes, and neurons, and these cytokines convey potent pro-inflammatory actions.
View Article and Find Full Text PDFBackground: The objective of this study was to systematically review the literature to determine the effect of combined hypothermia (HTH) and mesenchymal stem cell (MSC) therapy (administered during or immediately before or after HTH) compared with HTH alone on brain injury and neurobehavioural outcomes in animal models of neonatal hypoxic-ischaemic encephalopathy.
Methods: Primary outcomes assessed were neuropathological measures and neurobehavioural measures of brain outcome. Secondary outcomes were brain protein proinflammatory cytokine status.