Carbonaceous and carbon-coated electrodes are ubiquitous in electrochemical energy storage and conversion technologies due to their electrochemical stability, lightweight nature, and relatively low cost. However, traditional reliance on conductive additives and binders leads to impermanent electrical pathways. Here, a general approach is presented to fabricate robust electrodes with a progressive failure mechanism by introducing carbide-based interconnects grown via carbothermal conversion of (5 wt%) titanium hydride nanoparticles.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.