Background: Social determinants of health (SDOH) have been shown to be important predictors of health outcomes. Here we developed methods to extract them from inpatient electronic medical record (EMR) data using techniques compatible with current EMR systems.
Methods: Four social determinants were targeted: patient language barriers, employment status, education, and whether the patient lives alone.
Background: Electronic medical records (EMRs) contain large amounts of detailed clinical information. Using medical record review to identify conditions within large quantities of EMRs can be time-consuming and inefficient. EMR-based phenotyping using machine learning and natural language processing algorithms is a continually developing area of study that holds potential for numerous mental health disorders.
View Article and Find Full Text PDFBackground: Inpatient falls are a substantial concern for health care providers and are associated with negative outcomes for patients. Automated detection of falls using machine learning (ML) algorithms may aid in improving patient safety and reducing the occurrence of falls.
Objective: This study aims to develop and evaluate an ML algorithm for inpatient fall detection using multidisciplinary progress record notes and a pretrained Bidirectional Encoder Representation from Transformers (BERT) language model.
Objective: Coding of obesity using the International Classification of Diseases (ICD) in healthcare administrative databases is under-reported and thus unreliable for measuring prevalence or incidence. This study aimed to develop and test a rule-based algorithm for automating the detection and severity of obesity using height and weight collected in several sections of the Electronic Medical Records (EMRs).
Methods: In this cross-sectional study, 1904 inpatient charts randomly selected in three hospitals in Calgary, Canada between January and June 2015 were reviewed and linked with AllScripts Sunrise Clinical Manager EMRs.
BMJ Health Care Inform
December 2023
Introduction: Accurate identification of medical conditions within a real-time inpatient setting is crucial for health systems. Current inpatient comorbidity algorithms rely on integrating various sources of administrative data, but at times, there is a considerable lag in obtaining and linking these data. Our study objective was to develop electronic medical records (EMR) data-based inpatient diabetes phenotyping algorithms.
View Article and Find Full Text PDFBackground: Abstracting cerebrovascular disease (CeVD) from inpatient electronic medical records (EMRs) through natural language processing (NLP) is pivotal for automated disease surveillance and improving patient outcomes. Existing methods rely on coders' abstraction, which has time delays and under-coding issues. This study sought to develop an NLP-based method to detect CeVD using EMR clinical notes.
View Article and Find Full Text PDFBackground: Population based surveillance of surgical site infections (SSIs) requires precise case-finding strategies. We sought to develop and validate machine learning models to automate the process of complex (deep incisional/organ space) SSIs case detection.
Methods: This retrospective cohort study included adult patients (age ≥ 18 years) admitted to Calgary, Canada acute care hospitals who underwent primary total elective hip (THA) or knee (TKA) arthroplasty between Jan 1st, 2013 and Aug 31st, 2020.
Background: Surveillance of hospital-acquired pressure injuries (HAPI) is often suboptimal when relying on administrative health data, as International Classification of Diseases (ICD) codes are known to have long delays and are undercoded. We leveraged natural language processing (NLP) applications on free-text notes, particularly the inpatient nursing notes, from electronic medical records (EMRs), to more accurately and timely identify HAPIs.
Objective: This study aimed to show that EMR-based phenotyping algorithms are more fitted to detect HAPIs than ICD-10-CA algorithms alone, while the clinical logs are recorded with higher accuracy via NLP using nursing notes.
Background: Case identification is important for health services research, measuring health system performance and risk adjustment, but existing methods based on manual chart review or diagnosis codes can be expensive, time consuming or of limited validity. We aimed to develop a hypertension case definition in electronic medical records (EMRs) for inpatient clinical notes using machine learning.
Methods: A cohort of patients 18 years of age or older who were discharged from 1 of 3 Calgary acute care facilities (1 academic hospital and 2 community hospitals) between Jan.
Background: The initiatives of precision medicine and learning health systems require databases with rich and accurately captured data on patient characteristics. We introduce the linical gistry, dminisrative Data and lectronic Medical Records (CREATE) database, which includes linked data from 4 population databases: lberta rovincial oject for utcome ssessment in oronary eart Disease (APPROACH; a national clinical registry), Sunrise Clinical Manager (SCM) electronic medical record (city-wide), the Discharge Abstract Database (DAD), and the National Ambulatory Care Reporting System (NACRS). The intent of this work is to introduce a cardiovascular-specific database for pursuing precision health activities using big data analytics.
View Article and Find Full Text PDFBackground: Electronic medical records (EMRs) contain large amounts of rich clinical information. Developing EMR-based case definitions, also known as EMR phenotyping, is an active area of research that has implications for epidemiology, clinical care, and health services research.
Objective: This review aims to describe and assess the present landscape of EMR-based case phenotyping for the Charlson conditions.
Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information.
View Article and Find Full Text PDFReconstructing the structural connectivity between interacting units from observed activity is a challenge across many different disciplines. The fundamental first step is to establish whether or to what extent the interactions between the units can be considered pairwise and, thus, can be modeled as an interaction network with simple links corresponding to pairwise interactions. In principle, this can be determined by comparing the maximum entropy given the bivariate probability distributions to the true joint entropy.
View Article and Find Full Text PDF