Background And Purpose: Precise and individualized targeting of the ventral intermediate thalamic nucleus for the MR-guided focused ultrasound is crucial for enhancing treatment efficacy and avoiding undesirable side effects. In this study, we tested the hypothesis that the spatial relationships between Thalamus Optimized Multi Atlas Segmentation derived segmentations and the post-focused ultrasound lesion can predict post-operative side effects in patients treated with MR-guided focused ultrasound.
Materials And Methods: We retrospectively analyzed 30 patients (essential tremor, n = 26; tremor-dominant Parkinson's disease, n = 4) who underwent unilateral ventral intermediate thalamic nucleus focused ultrasound treatment.
A radio-pathomic machine learning (ML) model has been developed to estimate tumor cell density, cytoplasm density (Cyt) and extracellular fluid density (ECF) from multimodal MR images and autopsy pathology. In this multicenter study, we implemented this model to test its ability to predict survival in patients with recurrent glioblastoma (rGBM) treated with chemotherapy. Pre- and post-contrast T-weighted, FLAIR and ADC images were used to generate radio-pathomic maps for 51 patients with longitudinal pre- and post-treatment scans.
View Article and Find Full Text PDFBackground And Purpose: Normalized relative cerebral blood volume (nrCBV) and percentage of signal recovery (PSR) computed from dynamic susceptibility contrast (DSC) perfusion imaging are useful biomarkers for differential diagnosis and treatment response assessment in brain tumors. However, their measurements are dependent on DSC acquisition factors, and CBV-optimized protocols technically differ from PSR-optimized protocols. This study aimed to generate "synthetic" DSC data with adjustable synthetic acquisition parameters using dual-echo gradient-echo (GE) DSC datasets extracted from dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI).
View Article and Find Full Text PDFPurpose Of Review: The Response Assessment in Neuro-Oncology (RANO) 2.0 criteria aim at improving the standardization and reliability of treatment response assessment in clinical trials studying central nervous system (CNS) gliomas. This review presents the evidence supporting RANO 2.
View Article and Find Full Text PDFPatients with degenerative cervical myelopathy (DCM) experience structural and functional brain reorganization. However, few studies have investigated the influence of sex on cerebral alterations. The present study investigates the role of sex on brain functional connectivity (FC) and global network topology in DCM and healthy controls (HCs).
View Article and Find Full Text PDFRadiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults.
View Article and Find Full Text PDFTypical longitudinal radiographic assessment of brain tumors relies on side-by-side qualitative visualization of serial magnetic resonance images (MRIs) aided by quantitative measurements of tumor size. However, when assessing slowly growing tumors and/or complex tumors, side-by-side visualization and quantification may be difficult or unreliable. Whole-brain, patient-specific "digital flipbooks" of longitudinal scans are a potential method to augment radiographic side-by-side reads in clinical settings by enhancing the visual perception of changes in tumor size, mass effect, and infiltration across multiple slices over time.
View Article and Find Full Text PDFIn this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation.
View Article and Find Full Text PDFBackground: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma.
Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas ( = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings.
Background And Objectives: This study identified a clinically significant subset of patients with glioma with tumor outside of contrast enhancement present at autopsy and subsequently developed a method for detecting nonenhancing tumor using radio-pathomic mapping. We tested the hypothesis that autopsy-based radio-pathomic tumor probability maps would be able to noninvasively identify areas of infiltrative tumor beyond traditional imaging signatures.
Methods: A total of 159 tissue samples from 65 subjects were aligned to MRI acquired nearest to death for this retrospective study.
Purpose: Although fewer than 5% of high-grade gliomas (HGG) are BRAF-V600E mutated, these tumors are notable as BRAF-targeted therapy shows efficacy for some populations. The purpose of this study was to evaluate response to the combination of encorafenib with binimetinib in adults with recurrent BRAF-V600-mutated HGG.
Patients And Methods: In this phase 2, open-label, Adult Brain Tumor Consortium (ABTC) trial (NCT03973918), encorafenib and binimetinib were administered at their FDA-approved doses continuously in 28-day cycles.
Background And Purpose: The T2-FLAIR mismatch sign on MR imaging is a highly specific imaging biomarker of isocitrate dehydrogenase ()-mutant astrocytomas, which lack 1p/19q codeletion. However, most studies using the T2-FLAIR mismatch sign have used visual assessment. This study quantified the degree of T2-FLAIR mismatch using digital subtraction of fluid-nulled T2-weighted FLAIR images from non-fluid-nulled T2-weighted images in human nonenhancing diffuse gliomas and then used this information to assess improvements in diagnostic performance and investigate subregion characteristics within these lesions.
View Article and Find Full Text PDFResponse Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established.
View Article and Find Full Text PDFStandardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL).
View Article and Find Full Text PDFStudy Design: Prospective single institutional cohort study on degenerative cervical myelopathy (DCM) from 2009 to 2022.
Objective: This study aims to assess the relationship among preoperative spinal cord signal change, postoperative signal change evolution, and functional outcome in patients undergoing surgery for DCM.
Summary Of Background Data: There is conflicting evidence on whether spinal cord signal intensity influences functional outcomes in patients with DCM.