Glioblastoma (GBM) displays a wide range of inter- and intra-tumoral heterogeneity contributing to therapeutic resistance and relapse. Although Tumor Treating Fields (TTFields) are effective for the treatment of GBM, there is a lack of ex vivo models to evaluate effects on patients' tumor biology or to screen patients for treatment efficacy. Thus, we adapted patient-derived three-dimensional tissue culture models to be compatible with TTFields application to tissue culture.
View Article and Find Full Text PDFGlioblastoma leads to a fatal course within two years in more than two thirds of patients. An essential cornerstone of therapy is chemotherapy with temozolomide (TMZ). The effect of TMZ is counteracted by the cellular repair enzyme O-methylguanine-DNA methyltransferase (MGMT).
View Article and Find Full Text PDFBrain metastasis is a major challenge for therapy and defines the end stage of tumor progression with a very limited patients' prognosis. Experimental setups that faithfully mimic these processes are necessary to understand the mechanism of brain metastasis and to develop new improved therapeutic strategies. Here, we describe an in vitro model, which closely resembles the in vivo situation.
View Article and Find Full Text PDFTwo square-planar palladium(II) and platinum(II) azido complexes [M(N)(L)] with L = phenyl-2-[1-(2-pyridinyl)ethylidene]hydrazine carbothioamide reacted with four different electron-poor alkynes R-C≡C-R' with R = R' = COOCH, COOEt, COOCHCHOCH or R = CF, R' = COOEt in a [3 + 2] cycloaddition "iClick" reaction. The resulting triazolate complexes [M(triazolate)(L)] were isolated by simple precipitation and/or washing in high purity and good yield. Six out of the eight new compounds feature the triazolate ligand coordinated to the metal center via the N2 nitrogen atom, but fortuitous solubility properties allowed isolation of the N1 isomer in two cases from acetone.
View Article and Find Full Text PDF