In humans, the UDP-N-α-D galactosamine:polypeptide N-acetylgalactosaminyltransferases family (ppGalNAc-Ts, GalNAc-Ts or GALNTs) comprises 20 isoenzymes. They are responsible for the initial synthesis of α-GalNAc1,3-O-Ser/Thr, or Tn antigen, at initiation of mucin type O-linked glycosylation. This structure is normally extended by the further sequential action of glycosytransferases to build more complex linear or branched O-linked structures, but in cancers it is frequently left unelaborated, and its presence is often associated with poor patient prognosis.
View Article and Find Full Text PDFTo increase cancer patient survival and wellbeing, diagnostic assays need to be able to detect cases earlier, be applied more frequently, and preferably before symptoms develop. The expansion of blood biopsy technologies such as detection of circulating tumour cells and cell-free DNA has shown clinical promise for this. Extracellular vesicles released into the blood from tumour cells may offer a snapshot of the whole of the tumour.
View Article and Find Full Text PDFThe glycans displayed on the cell surface are highly heterogeneous and their function in cell recognition, identity, signaling, adhesion, and behavior is increasingly recognized. Moreover, as it is yet incompletely understood, it is a topic of significant current interest. Lectins (naturally occurring carbohydrate-binding proteins) are very useful tools for exploring cellular glycosylation.
View Article and Find Full Text PDFOrganisms are often exposed to environmental pressures that affect homeostasis, so it is important to understand the biological basis of stress-response. Various biological mechanisms have evolved to help cells cope with potentially cytotoxic changes in their environment. miRNAs are small non-coding RNAs which are able to regulate mRNA stability.
View Article and Find Full Text PDFHistol Histopathol
March 2014
O-linked glycosylation of proteins begins with the attachment of a single N-acetylgalactosamine (GalNAc) residue to a serine or threonine residue of the polypeptide and glycosylation of proteins can dramatically change their properties, interactions and activities. This initial attachment is catalysed by members of a family of 20 isoenzymes, the UDP-N-α-D-galactosamine: polypeptide N-acetylgalactosaminyltransferases or ppGalNAc-Ts. Why such a large family of isoenzymes are required to perform, apparently, a single function has been the subject of intense interest.
View Article and Find Full Text PDF