Plasmids are important vectors of horizontal gene transfer in microbial communities but can impose a burden on the bacteria that carry them. Such plasmid fitness costs are thought to arise principally from conflicts between chromosomal- and plasmid-encoded molecular machineries, and thus can be ameliorated by compensatory mutations (CMs) that reduce or resolve the underlying causes. CMs can arise on plasmids (i.
View Article and Find Full Text PDFPublic health actors have expressed concerns over the entry of the tobacco industry into the UK e-cigarette market. It is important to be aware of the tobacco industry's involvement and stated aims for e-cigarettes in the UK, given their historical attempts to divert attention from and escape responsibility for the harms caused by combustible cigarettes. The use of e-cigarettes amongst young people in the UK has remained constant, despite the law prohibiting sales to adolescents and claims by manufacturers and others that they are designed solely as a tool to quit smoking.
View Article and Find Full Text PDFPlasmids drive bacterial evolutionary innovation by transferring ecologically important functions between lineages, but acquiring a plasmid often comes at a fitness cost to the host cell. Compensatory mutations, which ameliorate the cost of plasmid carriage, promote plasmid maintenance in simplified laboratory media across diverse plasmid-host associations. Whether such compensatory evolution can occur in more complex communities inhabiting natural environmental niches where evolutionary paths may be more constrained is, however, unclear.
View Article and Find Full Text PDFBeyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle.
View Article and Find Full Text PDFGenes encoding resistance to stressors, such as antibiotics or environmental pollutants, are widespread across microbiomes, often encoded on mobile genetic elements. Yet, despite their prevalence, the impact of resistance genes and their mobility upon the dynamics of microbial communities remains largely unknown. Here we develop eco-evolutionary theory to explore how resistance genes alter the stability of diverse microbiomes in response to stressors.
View Article and Find Full Text PDFTemperate phages play important roles in bacterial communities but have been largely overlooked, particularly in non-pathogenic bacteria. In rhizobia the presence of temperate phages has the potential to have significant ecological impacts but few examples have been described. Here we characterize a novel group of 5 prophages, capable of sustaining infections across a broad host range within their host genus.
View Article and Find Full Text PDFThe 'plasmid paradox' arises because, although plasmids are common features of bacterial genomes, theoretically they should not exist: rates of conjugation were believed insufficient to allow plasmids to persist by infectious transmission, whereas the costs of plasmid maintenance meant that plasmids should be purged by negative selection regardless of whether they encoded beneficial accessory traits because these traits should eventually be captured by the chromosome, enabling the loss of the redundant plasmid. In the decade since the plasmid paradox was described, new data and theory show that a range of ecological and evolutionary mechanisms operate in bacterial populations and communities to explain the widespread distribution and stable maintenance of plasmids. We conclude, therefore, that multiple solutions to the plasmid paradox are now well understood.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2022
Conjugative plasmids play an important role in bacterial evolution by transferring niche-adaptive traits between lineages, thus driving adaptation and genome diversification. It is increasingly clear, however, that in addition to this evolutionary role, plasmids also manipulate the expression of a broad range of bacterial phenotypes. In this review, we argue that the effects that plasmids have on the expression of bacterial phenotypes may often represent plasmid adaptations, rather than mere deleterious side effects.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2022
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements.
View Article and Find Full Text PDFPlasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level.
View Article and Find Full Text PDFBy transferring ecologically important traits between species, plasmids drive genomic divergence and evolutionary innovation in their bacterial hosts. Bacterial communities are often diverse and contain multiple coexisting plasmids, but the dynamics of plasmids in multi-species communities are poorly understood. Here, we show, using experimental multi-species communities containing two plasmids, that bacterial diversity limits the horizontal transmission of plasmids due to the 'dilution effect'; this is an epidemiological phenomenon whereby living alongside less proficient host species reduces the expected infection risk for a focal host species.
View Article and Find Full Text PDFCompetitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex.
View Article and Find Full Text PDFPlasmids play an important role in bacterial evolution by transferring niche-adaptive functional genes between lineages, thus driving genomic diversification. Bacterial genomes commonly contain multiple, coexisting plasmid replicons, which could fuel adaptation by increasing the range of gene functions available to selection and allowing their recombination. However, plasmid coexistence is difficult to explain because the acquisition of plasmids typically incurs high fitness costs for the host cell.
View Article and Find Full Text PDFMicrobiology (Reading)
April 2021
Rhizobia - nitrogen-fixing, root-nodulating bacteria - play a critical role in both plant ecosystems and sustainable agriculture. Rhizobia form intracellular infections within legumes roots where they produce plant accessible nitrogen from atmospheric nitrogen and thus reduce the reliance on industrial inputs. The rhizobia-legume symbiosis is often treated as a pairwise relationship between single genotypes, both in research and in the production of rhizobial inoculants.
View Article and Find Full Text PDFCarriage of resistance genes can underpin bacterial survival, and by spreading these genes between species, mobile genetic elements (MGEs) can potentially protect diversity within microbial communities. The spread of MGEs could be affected by environmental factors such as selection for resistance, and biological factors such as plasmid host range, with consequences for individual species and for community structure. Here we cultured a focal bacterial strain, SBW25, embedded within a soil microbial community, with and without mercury selection, and with and without mercury resistance plasmids (pQBR57 or pQBR103), to investigate the effects of selection and resistance gene introduction on (1) the focal species; (2) the community as a whole; (3) the spread of the introduced resistance operon.
View Article and Find Full Text PDFPremise: Spiny pollen has evolved independently in multiple entomophilous lineages. Sexual selection may act on exine traits that facilitate male mating success by influencing the transfer of pollen from the anther to the body of the pollinator, while natural selection acts to increase pollen survival. We postulated that relative to sexual congeners, apomictic dandelions undergo relaxed selection on traits associated with male mating success.
View Article and Find Full Text PDFSince the first genome-scale comparisons, it has been evident that the genomes of many species are unbound by strict vertical descent: Large differences in gene content can occur among genomes belonging to the same prokaryotic species, with only a fraction of genes being universal to all genomes. These insights gave rise to the pangenome concept. The pangenome is defined as the set of all the genes present in a given species and can be subdivided into the accessory genome, present in only some of the genomes, and the core genome, present in all the genomes.
View Article and Find Full Text PDFThe acquisition of plasmids is often accompanied by fitness costs such that compensatory evolution is required to allow plasmid survival, but it is unclear whether compensatory evolution can be extensive or rapid enough to maintain plasmids when they are very costly. The mercury-resistance plasmid pQBR55 drastically reduced the growth of its host, SBW25, immediately after acquisition, causing a small colony phenotype. However, within 48 h of growth on agar plates we observed restoration of the ancestral large colony morphology, suggesting that compensatory mutations had occurred.
View Article and Find Full Text PDFThe global dissemination of plasmids encoding antibiotic resistance represents an urgent issue for human health and society. While the fitness costs for host cells associated with plasmid acquisition are expected to limit plasmid dissemination in the absence of positive selection of plasmid traits, compensatory evolution can reduce this burden. Experimental data suggest that compensatory mutations can be located on either the chromosome or the plasmid, and these are likely to have contrasting effects on plasmid dynamics.
View Article and Find Full Text PDFStudies of abiotic adaptation often consider single species in isolation, yet natural communities contain many coexisting species which could limit or promote abiotic adaptation. Here we show, using soil bacterial communities, that evolving in the presence of a competitor constrained abiotic adaptation. Specifically, evolved alone was fitter than evolved alongside , when was absent.
View Article and Find Full Text PDFBacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction.
View Article and Find Full Text PDFPlasmids accelerate bacterial adaptation by sharing ecologically important traits between lineages. However, explaining plasmid stability in bacterial populations is challenging owing to their associated costs. Previous theoretical and experimental studies suggest that pulsed positive selection may explain plasmid stability by favouring gene mobility and promoting compensatory evolution to ameliorate plasmid cost.
View Article and Find Full Text PDF