The Mediterranean Sea has been sampled irregularly by research vessels in the past, mostly by national expeditions in regional waters. To monitor the hydrographic, biogeochemical and circulation changes in the Mediterranean Sea, a systematic repeat oceanographic survey programme called Med-SHIP was recommended by the Mediterranean Science Commission (CIESM) in 2011, as part of the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). Med-SHIP consists of zonal and meridional surveys with different frequencies, where comprehensive physical and biogeochemical properties are measured with the highest international standards.
View Article and Find Full Text PDFIntroduction: Marine viruses regulate microbial population dynamics and biogeochemical cycling in the oceans. The ability of viruses to manipulate hosts' metabolism through the expression of viral auxiliary metabolic genes (AMGs) was recently highlighted, having important implications in energy production and flow in various aquatic environments. Up to now, the presence and diversity of viral AMGs is studied using -omics data, and rarely using quantitative measures of viral activity alongside.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2021
Despite that fluorescence spectroscopy coupled with Parallel Factor Analysis (PARAFAC) has been widely used in the investigation of Fluorescent Dissolved Organic Matter (FDOM) in aquatic systems, the proper performance of PARAFAC analysis on datasets originating from various sources is not to be taken for granted. In this study, we examine the impact of the co-analysis of datasets from various natural water systems located in the same geographical region in the Eastern Mediterranean Sea. For this purpose three datasets were formed representative of open sea waters (SW), rivers and streams (RV) and lagoons (LG).
View Article and Find Full Text PDFMost transboundary rivers and their wetlands are subject to considerable anthropogenic pressures associated with multiple and often conflicting uses. In the Eastern Mediterranean such systems are also particularly vulnerable to climate change, posing additional challenges for integrated water resources management. Comprehensive measurements of the optical signature of colored dissolved organic matter (CDOM) were combined with measurements of river discharges and water physicochemical and biogeochemical properties, to assess carbon dynamics, water quality, and anthropogenic influences in a major transboundary system of the Eastern Mediterranean, the Evros (or, Марица or, Meriç) river and its protected coastal wetland.
View Article and Find Full Text PDF