Extracellular vesicles (EVs) have emerged in the last decades as a cell-to-cell communication mechanism. One of their mechanism of action is the direct delivery of their cargo, composed of bioactive molecules to target cells. Different methods (direct electroporation, cell transfection, chemical transfection) were developed to vehicle therapeutic molecules through EVs.
View Article and Find Full Text PDFExtracellular vesicles are considered a novel therapeutic tool, due to their ability to transfer their cargoes to target cells. Different strategies to directly load extracellular vesicles with RNA species have been proposed. Electroporation has been used for the loading of non-active vesicles; however, the engineering of vesicles already carrying a therapeutically active cargo is still under investigation.
View Article and Find Full Text PDFAlport syndrome (AS) is a genetic disorder involving mutations in the genes encoding collagen IV α3, α4 or α5 chains, resulting in the impairment of glomerular basement membrane. Podocytes are responsible for production and correct assembly of collagen IV isoforms; however, data on the phenotypic characteristics of human AS podocytes and their functional alterations are currently limited. The evident loss of viable podocytes into the urine of patients with active glomerular disease enables their isolation in a non-invasive way.
View Article and Find Full Text PDFLimitations in the current therapeutic strategies for the prevention of progression of chronic kidney disease (CKD) to end stage renal disease has been a drawback to improving patient recovery. It is therefore imperative that a solution is found to alleviate this problem and improve the health and well-being of patients overall. Aristolochic acid (AA) induced nephropathy, a type of nephrotoxic CKD is characterised by cortical tubular injury, inflammation, leading to interstitial fibrosis.
View Article and Find Full Text PDFAcute kidney injury, defined by a rapid deterioration of renal function, is a common complication in hospitalized patients. Among the recent therapeutic options, the use of extracellular vesicles (EVs) is considered a promising strategy. Here we propose a possible therapeutic use of renal-derived EVs isolated from normal urine (urine-derived EVs [uEVs]) in a murine model of acute injury generated by glycerol injection.
View Article and Find Full Text PDFWith limited therapeutic intervention in preventing the progression to end-stage renal disease, chronic kidney disease (CKD) remains a global health-care burden. Aristolochic acid (AA) induced nephropathy is a model of CKD characterised by inflammation, tubular injury, and interstitial fibrosis. Human liver stem cell-derived extracellular vesicles (HLSC-EVs) have been reported to exhibit therapeutic properties in various disease models including acute kidney injury.
View Article and Find Full Text PDFRenal repair after injury is dependent on clonal expansion of proliferation-competent cells. In the human kidney, the expression of CD133 characterizes a population of resident scattered cells with resistance to damage and ability to proliferate. However, the biological function of the CD133 molecule is unknown.
View Article and Find Full Text PDFIn humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis.
View Article and Find Full Text PDFUrine represents an unlimited source of patient-specific kidney cells that can be harvested noninvasively. Urine derived podocytes and proximal tubule cells have been used to study disease mechanisms and to screen for novel drug therapies in a variety of human kidney disorders. The urinary kidney stem/progenitor cells and extracellular vesicles, instead, might be promising for therapeutic treatments of kidney injury.
View Article and Find Full Text PDFAs in several body fluids, urine is a rich reservoir of extracellular vesicles (EVs) directly originating from cells facing the urinary lumen, including differentiated tubular cells, progenitor cells and infiltrating inflammatory cells. Several markers of glomerular and tubular damage, such as WT-1, ATF3 and NGAL, as well as of renal regeneration, such as CD133, have been identified representing an incredible source of information for diagnostic purposes. In addition, urinary extracellular vesicles (uEVs) appear to be involved in the cell-to-cell communication along the nephron, although this aspect needs further elucidation.
View Article and Find Full Text PDFPhosphatase and tensin homolog deleted on chromosome ten (PTEN) is one of the most frequently mutated human tumor suppressor genes, implicated in cell growth and survival and suppressing tumor formation. Loss of PTEN activity, either at the protein or genomic level, has been related to many primary and metastatic malignancies including breast cancer. The present study investigates the heterozygosity, mutation spectrum and protein expression of PTEN in 43 patients with breast cancer or precursor lesions of the breast and 10 healthy individuals.
View Article and Find Full Text PDF