Publications by authors named "Elli Kempas"

Population isolates, such as Finland, have proved beneficial in mapping rare causative genetic variants due to a limited number of founders resulting in reduced genetic heterogeneity and extensive linkage disequilibrium (LD). We have here used this special opportunity to identify rare alleles in autism by genealogically tracing 20 autism families into one extended pedigree with verified genealogical links reaching back to the 17th century. In this unique pedigree, we performed a dense microsatellite marker genome-wide scan of linkage and LD and followed initial findings with extensive fine-mapping.

View Article and Find Full Text PDF

Two single nucleotide polymorphisms (SNP) within Mitochondrial Aspartate/Glutamate Carrier SLC25A12 gene have recently shown to be strongly associated with autism. Here, we attempted to replicate this finding in two separate Finnish samples with autism spectrum disorders. Family-based association analysis of two SNPs, rs2056202 and rs2292813, previously shown to be associated with autism was performed in two samples with different phenotypic characteristics.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are severe neurodevelopmental disorders with a strong genetic component. Only a few predisposing genes have been identified so far. We have previously performed a genome-wide linkage screen for ASDs in Finnish families where the most significant linkage peak was identified at 3q25-27.

View Article and Find Full Text PDF

Objective: Several genome-wide screens have been performed in autism spectrum disorders resulting in the identification of numerous putative susceptibility loci. Analyses of pooled primary data should result in an increased sample size and the different study samples have a potential to strengthen the evidence for some earlier identified loci, reveal novel loci, and even to provide information of the general significance of the locus. The objective of this study was to search for potential susceptibility loci for autism, which are supported by two independent samples.

View Article and Find Full Text PDF

Neuroligins are cell-adhesion molecules located at the postsynaptic side of the synapse. Neuroligins interact with beta-neurexins and this interaction is involved in the formation of functional synapses. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have recently been implicated in pathogenesis of autism.

View Article and Find Full Text PDF

Mutations in the methyl-CpG-binding protein 2 (MECP2) gene are known to underlie Rett' syndrome, the most common cause of mental retardation (MR) in girls. Since the original report, phenotypes resulting from MECP2 mutations have been shown to extend, for example, to several Rett variants, autism, atypical Angelman syndrome, and nonspecific MR. It was earlier proposed that MECP2 mutations might account for approximately 2% of the male cases with nonspecific MR.

View Article and Find Full Text PDF

To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.

View Article and Find Full Text PDF