Publications by authors named "Ellestad L"

Article Synopsis
  • The study investigates the physiological changes in laying hens related to calcium and phosphorus utilization for eggshell formation, specifically looking at the effects of a diet supplemented with 1α-hydroxycholecalciferol (AlphaD3).
  • It was found that as hens aged from 18 to 31 weeks, there were significant changes in hormone sensitivity and gene expression linked to calcium and phosphorus regulation, indicating the kidney's increased role in vitamin D processing and bone health during egg production.
  • The results showed that hens on the AlphaD3 diet had improved bone quality, with higher mineral density in the humerus and tibia compared to those on a control diet, highlighting the dietary impact on skeletal health
View Article and Find Full Text PDF

Dietary phytate P (PP) concentration impacts Ca and P digestibility in broilers. Research was conducted to determine the impact of increasing concentration of dietary PP, with and without phytase, on broiler standardized ileal digestibility (SID) of Ca and P. Digestible (Dig) Ca and P were calculated by multiplying SID and the analyzed dietary Ca and P concentrations.

View Article and Find Full Text PDF

Somatotropic gene expression has been altered by genetic selection, and developmental changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression may contribute to rapid growth and muscle accretion in commercial broilers. The objective of this study was to evaluate changes in somatotropic axis activity between embryonic day (e) 12 and post-hatch day (d) 21. Liver and breast muscle (pectoralis major) were collected to measure gene expression, and blood was collected post-hatch to measure circulating IGFs.

View Article and Find Full Text PDF

Maintenance of calcium and phosphorus homeostasis in laying hens is crucial for preservation of skeletal integrity and eggshell quality, though physiological regulation of these systems is incompletely defined. To investigate changes in mineral and vitamin D homeostasis during the 24-h egg formation cycle, 32-wk-old commercial laying hens were sampled at 1, 3, 4, 6, 7, 8, 12, 15, 18, 21, 23, and 24 h post-oviposition (HPOP; n ≥ 4). Ovum location and egg calcification stage were recorded, and blood chemistry, plasma vitamin D metabolites, circulating parathyroid hormone (PTH), and expression of genes mediating uptake and utilization of calcium and phosphorus were evaluated.

View Article and Find Full Text PDF

Commercial laying hens can produce one egg approximately every 24 h. During this process, regulatory systems that control vitamin D metabolism, calcium and phosphorus homeostasis, and intestinal uptake of these minerals work in concert to deliver components required for eggshell calcification and bone mineralization. Commercial production cycles have been extended in recent years to last through 100 weeks of age, and older hens often exhibit an increased prevalence of skeletal fractures and poor eggshell quality.

View Article and Find Full Text PDF

Background: The first two weeks of post-hatch (PH) growth in broilers (meat-type birds) are critical for gut development and microbiota colonization. In the current broiler production system, chicks may not receive feed and water for 24 to 72 h due to variations in hatching time and hatchery management. Post-hatch feed delay affects body weight, feed efficiency, mortality, and gut development.

View Article and Find Full Text PDF

The somatotropic axis influences growth and metabolism, and many of its effects are a result of insulin-like growth factor (IGF) signaling modulated by IGF-binding proteins (IGFBPs). Modern commercial meat-type (broiler) chickens exhibit rapid and efficient growth and muscle accretion resulting from decades of commercial genetic selection, and it is not known how alterations in the IGF system has contributed to these improvements. To determine the effect of commercial genetic selection on somatotropic axis activity, two experiments were conducted comparing legacy Athens Canadian Random Bred and modern Ross 308 male broiler lines, one between embryonic days 10 and 18 and the second between post-hatch days 10 and 40.

View Article and Find Full Text PDF

Commercial selection for meat-type (broiler) chickens has produced economically valuable birds with fast growth rates, enhanced muscle mass, and highly efficient feed utilization. The physiological changes that account for this improvement and unintended consequences associated with them remain largely unexplored, despite their potential to guide further advancements in broiler production efficiency. To identify effects of genetic selection on hormonal signaling in the adrenocorticotropic and thyrotropic axes, gene expression in muscle and liver and post-hatch circulating hormone concentrations were measured in legacy [Athens Canadian Random Bred (ACRB)] and modern (Ross 308) male broilers between embryonic days (e) 10 and e18 and post-hatch days (d) 10 and d40.

View Article and Find Full Text PDF

Many types of mycotoxins are found in food sources contaminated with fungi, and if these are ingested in large quantities or over a long period, they can affect the health of humans and domestic animals. Berberine (BBR) is a plant alkaloid with multiple pharmacological functions. This study aimed to investigate the effect of different levels of the plant alkaloid BBR on reducing toxic effects of aflatoxin B1 (AFB) and ochratoxin A (OTA) in broilers by examining performance characteristics, blood biochemistry, antioxidant systems, ileum morphology, and histopathology of the liver.

View Article and Find Full Text PDF

This study was conducted to evaluate potential hormonal mechanisms associated with the stress response, thermoregulation, and metabolic changes of broiler chickens exposed to high environmental temperature. Nine hundred 1-day-old male broiler chicks (Ross 708) were placed in floor pens and raised to 24 d. At 24 d, chicks were randomly assigned to 1 of 2 treatments, heat stress (HS) or no HS, and allocated into battery cages in 8 batteries (10 birds per cage, 2 cages per battery).

View Article and Find Full Text PDF

Birds rely solely on utilization of the yolk sac as a means of nutritional support throughout embryogenesis and early post-hatch, before first feeding occurs. Newly hatched broiler (meat-type) chickens are frequently not given immediate access to feed, and this can result in numerous alterations to developmental processes, including those that occur in muscle. The objective of this study was to characterize the gene expression profile of newly hatched chicks' breast muscle with regards to hormonal regulation of growth and metabolism and development and differentiation of muscle tissue, and determine impacts of delayed access to feed on these profiles.

View Article and Find Full Text PDF

Background: The fasting-refeeding perturbation has been used extensively to reveal specific genes and metabolic pathways that control energy metabolism in the chicken. Most global transcriptional scans of the fasting-refeeding response in liver have focused on juvenile chickens that were 1, 2 or 4 weeks old. The present study was aimed at the immediate post-hatch period, in which newly-hatched chicks were subjected to fasting for 4, 24 or 48 h, then refed for 4, 24 or 48 h, and compared with a fully-fed control group at each age (D1-D4).

View Article and Find Full Text PDF

Newly hatched chicks must transition from lipid-rich yolk to carbohydrate-rich feed as their primary nutrient source, and posthatch delays in access to feed can have long-term negative consequences on growth and metabolism. In this study, impacts of delayed access to feed at hatch on expression of genes related to nutrient uptake and utilization in two metabolically important tissues, liver and muscle, were determined in broiler (meat-type) chickens. Hatched chicks were given access to feed within 3 h (fed) or delayed access to feed for 48 h (delayed fed), and liver and breast muscle were collected from males at hatch and 4 h, 1 day, 2 days, 4 days, and 8 days posthatch for analysis of gene expression.

View Article and Find Full Text PDF

Background: Though intensive genetic selection has led to extraordinary advances in growth rate and feed efficiency in production of meat-type chickens, endocrine processes controlling these traits are still poorly understood. The anterior pituitary gland is a central component of the neuroendocrine system and plays a key role in regulating important physiological processes that directly impact broiler production efficiency, though how differences in pituitary gland function contribute to various growth and body composition phenotypes is not fully understood.

Results: Global anterior pituitary gene expression was evaluated on post-hatch weeks 1, 3, 5, and 7 in male broiler chickens selected for high (HG) or low (LG) growth.

View Article and Find Full Text PDF
Article Synopsis
  • Heat stress significantly hampers growth and leads to economic losses in the poultry industry, creating a need for effective mitigation strategies.
  • The study explored the effects of Noni, a tropical medicinal plant, on broiler chickens' feeding behaviors and stress-related gene expression under acute heat stress conditions.
  • Results showed that while Noni did not increase feed intake, it helped reduce core body temperature and modulated gene expression linked to stress response, indicating potential benefits for managing heat stress in poultry.
View Article and Find Full Text PDF
Article Synopsis
  • - Heat stress (HS) affects fat metabolism in broilers by decreasing feed intake and body weight while altering the expression of key proteins involved in fat synthesis and breakdown in the liver.
  • - A study examined the impact of both acute (2-hour) and chronic (3-week) HS on genes related to fat metabolism in broilers fed a control diet versus one supplemented with 0.2% dried Noni plant.
  • - Results showed that Noni supplementation influenced the expression of lipogenic proteins differently across HS exposure times, highlighting its potential to modulate fat metabolism, although it did not significantly affect growth performance.
View Article and Find Full Text PDF

Heat stress (HS) is devastating to poultry production worldwide, yet its biology and molecular responses are not well defined. Although advances in management strategy have partially alleviated the negative impact of HS, productivity still continues to decline when the ambient temperature rises. Therefore, identifying mechanism-based approaches to decrease HS susceptibility while improving production traits is critical.

View Article and Find Full Text PDF

Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model.

View Article and Find Full Text PDF

Gestagen is a collective term for endogenous and synthetic progesterone receptor (PR) ligands. In teleost fishes, 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and 17α,20β,21-trihydroxy-4-pregnen-3-one (20β-S) are the predominant progestogens, whereas in other vertebrates the major progestogen is progesterone (P4). Progestins are components of human contraceptives and hormone replacement pharmaceuticals and, with P4, can enter the environment and alter fish and amphibian reproductive health.

View Article and Find Full Text PDF

Fish and other aquatic wildlife, including frogs, turtles, and alligators, have been used as vertebrate sentinels for the effects of endocrine disrupting and other emerging chemicals of concern found in aquatic ecosystems. Research has focused on the effects of estrogenic, androgenic, and thyroidogenic compounds, but there is a growing body of literature on the reproductive health exposure effects of environmental gestagens on aquatic wildlife. Gestagens include native progestogens, such as progesterone, and synthetic progestins, such as gestodene and levonorgestrel, which bind progesterone receptors and have critically important roles in vertebrate physiology, especially reproduction.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals are exogenous substances that can impact the reproduction of fish, potentially by altering circulating concentrations of 17β-estradiol (E2), testosterone (T), and 11-ketotestosterone (11-KT). Common methods to measure steroids in plasma samples include radioimmunoassays (RIAs) and enzyme-linked immunosorbant assays (ELISAs). The present study examines variability in E2, T, and 11-KT across 8 laboratories measuring reference and pulp mill effluent-exposed white sucker (Catostomus commersoni) plasma.

View Article and Find Full Text PDF

Within the anterior pituitary gland, glucocorticoids such as corticosterone (CORT) provide negative feedback to inhibit adrenocorticotropic hormone secretion and act to regulate production of other hormones including growth hormone (GH). The ontogeny of GH production during chicken embryonic and rat fetal development is controlled by glucocorticoids. The present study was conducted to characterize effects of glucocorticoids on gene expression within embryonic pituitary cells and to identify genes that are rapidly and directly regulated by glucocorticoids.

View Article and Find Full Text PDF

Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary.

View Article and Find Full Text PDF
Article Synopsis
  • Glucocorticoid (GC) treatment in embryonic pituitary cells leads to early growth hormone (GH) production, which requires ongoing protein synthesis and involves unique regulatory mechanisms since GH genes lack standard GC response elements.
  • Through experiments with a luciferase reporter linked to the chicken GH gene, researchers identified a specific GC-responsive region that includes binding sites for the protein ETS-1 and a degenerate GRE (dGRE), crucial for the hormone's induction.
  • The study found that ETS-1 and the glucocorticoid receptor (GR) are essential for binding to this regulatory region, indicating a unique mechanism for GC modulation of GH gene expression during embryonic development, which is also relevant across different vertebrates.
View Article and Find Full Text PDF