GLPG1972/S201086 is a disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5) inhibitor in development as an osteoarthritis disease-modifying therapy. We report the safety, tolerability, pharmacokinetics, and pharmacodynamics (turnover of plasma/serum ARGS-aggrecan neoepitope fragments [ARGS]) of GLPG1972 in 3 randomized, double-blind, placebo-controlled phase 1 trials. Study A, a first-in-human trial of single (≤2100 mg [fasted] and 300 mg [fed]) and multiple (≤1050 mg once daily [fed]; 14 days) ascending oral (solution) doses, investigated GLPG1972 in healthy men (N = 41; NCT02612246).
View Article and Find Full Text PDFObjective: This study aims to assess the efficacy of the anticatabolic 'a disintegrin and metalloproteinase with thrombospondin motif-5' (ADAMTS-5) inhibitor, S201086/GLPG1972, in slowing cartilage loss in participants with knee osteoarthritis (OA).
Design: ROCCELLA (NCT03595618) is a randomized, double-blind, placebo-controlled, parallel-group, dose-ranging, phase 2 trial. We plan to enrol a total of 852 participants with knee OA across 12 countries.
There are currently no approved disease-modifying osteoarthritis (OA) drugs (DMOADs). The aggrecanase ADAMTS-5 is key in the degradation of human aggrecan (AGC), a component of cartilage. Therefore, ADAMTS-5 is a promising target for the identification of DMOADs.
View Article and Find Full Text PDFGPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit , identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 ().
View Article and Find Full Text PDFErythropoietin-producing hepatocellular receptors (Eph) promote the onset and sustain the progression of cancers such as colorectal cancer (CRC), in which the A2 subtype of Eph receptor expression has been shown to correlate with a poor prognosis and has been identified as a promising therapeutic target. Herein, we investigated, and , the effects of treatment with GLPG1790, a potent pan-Eph inhibitor. The small molecule has selective activity against the EphA2 isoform in human HCT116 and HCT15 CRC cell lines expressing a constitutively active form of RAS concurrently with a wild-type or mutant form of p53, respectively.
View Article and Find Full Text PDFGLPG1690 is a novel autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis (IPF). We report phase 1 studies investigating the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of GLPG1690 in healthy subjects. We performed a first-in-human randomized, double-blind, placebo-controlled trial of single (20, 60, 150, 300, 600, 1000, 1500 mg) and multiple (14 days: 150 mg twice daily; 600 and 1000 mg once daily) ascending oral doses of GLPG1690 (NCT02179502), and a randomized, open-label, crossover relative bioavailability study to compare the PK of tablet and capsule formulations of GLPG1690 600 mg and to assess the effect of food on PK of the tablet formulation (NCT03143712).
View Article and Find Full Text PDFBackground And Objectives: GLPG1690 is an autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis. Several publications suggested a role of autotaxin in the control of disease-affected lung function and of lysophosphatidic acid in lung remodeling processes. The aim of the current article was to describe the exposure-response relationship of GLPG1690 and further develop a rational basis to support dose selection for clinical trials in patients with idiopathic pulmonary fibrosis.
View Article and Find Full Text PDFCancers (Basel)
March 2019
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) causes irreversible loss of lung function. People with IPF have increased concentrations of autotaxin in lung tissue and lysophosphatidic acid (LPA) in bronchoalveolar lavage fluid and exhaled condensate. GLPG1690 (Galapagos, Mechelen, Belgium) is a novel, potent, selective autotaxin inhibitor with good oral exposure.
View Article and Find Full Text PDFJ Med Chem
February 2018
Cystic fibrosis (CF) is caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Orkambi, it has been shown that CFTR function can be partially restored by administering one or more small molecules. These molecules aim at either enhancing the amount of CFTR on the cell surface (correctors) or at improving the gating function of the CFTR channel (potentiators).
View Article and Find Full Text PDFJ Hematol Oncol
October 2017
Background: EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines.
Methods: EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM).
Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS).
View Article and Find Full Text PDFAutotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11).
View Article and Find Full Text PDFFFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters.
View Article and Find Full Text PDFJanus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3.
View Article and Find Full Text PDFThe JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors.
View Article and Find Full Text PDFStructural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing.
View Article and Find Full Text PDFThe disclosed 3-phenyl-5-isothiazole carboxamides are potent allosteric antagonists of mGluR1 with generally good selectivity relative to the related group 1 receptor mGluR5. Pharmacokinetic properties of a member of this series (1R,2R)-N-(3-(4-methoxyphenyl)-4-methylisothiazol-5-yl)-2-methylcyclopropanecarboxamide (14) are good, showing acceptable plasma and brain exposure after oral dosing. Oral administration of isothiazole 14 gave robust activity in the formalin model of persistent pain which correlated with CNS receptor occupancy.
View Article and Find Full Text PDFSeveral naphthalimides have been evaluated clinically as potential anticancer agents. UNBS3157, a naphthalimide that belongs to the same class as amonafide, was designed to avoid the specific activating metabolism that induces amonafide's hematotoxicity. The current study shows that UNBS3157 rapidly and irreversibly hydrolyzes to UNBS5162 without generating amonafide.
View Article and Find Full Text PDF