The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) remains a major public health concern, and vaccine unavailability, hesitancy, or failure underscore the need for discovery of efficacious antiviral drug therapies. Numerous approved drugs target protein kinases associated with viral life cycle and symptoms of infection. Repurposing of kinase inhibitors is appealing as they have been vetted for safety and are more accessible for COVID-19 treatment.
View Article and Find Full Text PDFBromodomain-containing protein 9 (BRD9), an essential component of the SWI/SNF chromatin remodeling complex termed ncBAF, has been established as a therapeutic target in a subset of sarcomas and leukemias. Here, we used novel small molecule inhibitors and degraders along with RNA interference to assess the dependency on BRD9 in the context of diverse hematological malignancies, including acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), and multiple myeloma (MM) model systems. Following depletion of BRD9 protein, AML cells undergo terminal differentiation, whereas apoptosis was more prominent in ALL and MM.
View Article and Find Full Text PDFActivating mutations in EZH2, the catalytic component of PRC2, promote cell proliferation, tumorigenesis, and metastasis through enzymatic or non-enzymatic activity. The EZH2-Y641 gain-of-function mutation is one of the most significant in diffuse large B-cell lymphoma (DLBCL). Although EZH2 kinase inhibitors, such as EPZ-6438, provide clinical benefit, certain cancer cells are resistant to the enzymatic inhibition of EZH2 because of the inability to functionally target mutant EZH2, or because of cells' dependence on the non-histone methyltransferase activity of EZH2.
View Article and Find Full Text PDFMutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2.
View Article and Find Full Text PDFChronic myeloid leukemia (CML), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL) are hematological malignancies that remain incurable despite novel treatments. In order to improve current treatments and clinical efficacy, there remains a need for more complex models that mimic the intricate human leukemic microenvironment. This study aimed to use 3D tissue engineered plasma cultures (3DTEPC) derived from CML, AML and CLL patients to promote proliferation of leukemic cells for use as a drug screening tool for treatment.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive cancer defined by loss-of-function mutations with few therapeutic options. We examined the contribution of the transcription factor Signal transducer and activator of transcription 3 (STAT3) to cell growth and gene expression in preclinical models of MPM. STAT3 is activated in a variety of tumors and is thought to be required for the maintenance of cancer stem cells.
View Article and Find Full Text PDFThe outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials.
View Article and Find Full Text PDFCan J Physiol Pharmacol
August 2020
In response to the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), researchers are expeditiously searching for antiviral treatments able to alleviate the symptoms of infection, which can be life-threatening. Here, we provide a general overview of what is currently known about the structure and characteristic features of SARS-CoV-2, some of which could potentially be exploited for the purposes of antiviral therapy and vaccine development. This minireview also covers selected and noteworthy antiviral agents/supportive therapy out of hundreds of drugs that are being repurposed or tested as potential treatments for COVID-19, the disease caused by SARS-CoV-2.
View Article and Find Full Text PDFUbiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many reported substrates with a role in cancer progression, including FOXO4, MDM2, N-Myc, and PTEN. The multi-substrate nature of USP7, combined with the modest potency and selectivity of early generation USP7 inhibitors, has presented a challenge in defining predictors of response to USP7 and potential patient populations that would benefit most from USP7-targeted drugs.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBackground: There is growing evidence that spleen tyrosine kinase (SYK) is critical for acute myeloid leukaemia (AML) transformation and maintenance of the leukemic clone in AML patients. It has also been found to be over-expressed in AML patients, with activating mutations in foetal liver tyrosine kinase 3 (FLT3), particularly those with internal tandem duplications (FLT3-ITD), where it transactivates FLT3-ITD and confers resistance to treatment with FLT3 tyrosine kinase inhibitors (TKIs).
Methods: We have previously described a pharmacological approach to treating FLT3-ITD-positive AML that relies on proteasome-mediated FLT3 degradation via inhibition of USP10, the deubiquitinating enzyme (DUB) responsible for cleaving ubiquitin from FLT3.
Mutations in the E3 ubiquitin ligase CBL, found in several myeloid neoplasms, lead to decreased ubiquitin ligase activity. In murine systems, these mutations are associated with cytokine-independent proliferation, thought to result from the activation of hematopoietic growth receptors, including FLT3 and KIT. Using cell lines and primary patient cells, we compared the activity of a panel of FLT3 inhibitors currently being used or tested in AML patients and also evaluated the effects of inhibition of the non-receptor tyrosine kinase, SYK.
View Article and Find Full Text PDFBackground And Purpose: Bruton's tyrosine kinase (BTK) plays a key role in B-cell receptor signalling by regulating cell proliferation and survival in various B-cell malignancies. Covalent low-MW BTK kinase inhibitors have shown impressive clinical efficacy in B-cell malignancies. However, the mutant Btk poses a major challenge in the management of B-cell malignancies by disrupting the formation of the covalent bond between BTK and irreversible inhibitors, such as ibrutinib.
View Article and Find Full Text PDFMutations in two type-3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors.
View Article and Find Full Text PDFMost of the current FMS-like tyrosine kinase 3 (FLT3) inhibitors lack selectivity between FLT3 kinase and cKIT kinase as well as the FLT3 wt and internal tandem duplication (ITD) mutants. We report a new compound 27, which displays GI values of 30-80 nM against different ITD mutants and achieves selectivity over both FLT3 wt (8-fold) and cKIT kinase in the transformed BaF3 cells (>300-fold). 27 potently inhibits the proliferation of the FLT3-ITD-positive acute myeloid leukemia cancer lines through suppression of the phosphorylation of FLT3 kinase and downstream signaling pathways, induction of apoptosis, and arresting the cell cycle into the G0/G1 phase.
View Article and Find Full Text PDF