Unlabelled: ARID1A is a subunit of SWI/SNF chromatin remodeling complexes and is mutated in many types of human cancers, especially those derived from endometrial epithelium, including ovarian and uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). Loss-of-function mutations in ARID1A alter epigenetic regulation of transcription, cell-cycle checkpoint control, and DNA damage repair. We report here that mammalian cells with ARID1A deficiency harbor accumulated DNA base lesions and increased abasic (AP) sites, products of glycosylase in the first step of base excision repair (BER).
View Article and Find Full Text PDFBiguanide drugs (metformin and phenformin) have drawn interest for potential cancer treatments, and laboratory studies show that some cancer cells are selectively sensitive to growth-inhibitory effects of biguanides. Examining metabolic pathways affected by biguanide treatments in cancer cells that are highly sensitive to biguanides, we found that biguanide treatment depletes cellular levels of both aspartate and NAD+. Experiments to replenish these metabolites or block steps of the aspartate-malate shuttle suggest that depletion of both metabolites, rather than either aspartate of NAD+ individually, is critical for growth-inhibitory effects of biguanide exposure.
View Article and Find Full Text PDFStem cell therapies, although promising for treating peripheral arterial disease (PAD), often suffer from low engraftment rates and the inability to confirm the delivery success and track cell distribution and engraftment. Stem cell microencapsulation combined with imaging contrast agents may provide a means to simultaneously enhance cell survival and enable cell tracking with noninvasive imaging. Here, we have evaluated a novel MRI- and X-ray-visible microcapsule formulation for allogeneic mesenchymal stem cell (MSC) delivery and tracking in a large animal model.
View Article and Find Full Text PDFBackground: Esophageal squamous cell carcinoma (ESCC) is common in East Asia and also is often deadly. We sought to determine whether measuring the discoidin domain receptor-1 (DDR1)-both total and phosphorylated proteins-could improve our ability to predict recurrence in ESCC.
Materials And Methods: Total DDR1 and phosphorylated DDR1 (pDDR1) were measured using semiquantitative immunohistochemistry in a cohort of 60 patients with ESCC.
Phenomics has the potential to facilitate significant advances in biology but requires the development of high-throughput technologies capable of generating and analysing high-dimensional data. There are significant challenges associated with building such technologies, not least those required for investigating dynamic processes such as embryonic development, during which high rates of temporal, spatial, and functional change are inherently difficult to capture. Here, we present EmbryoPhenomics, an accessible high-throughput platform for phenomics in aquatic embryos comprising an Open-source Video Microscope (OpenVIM) that produces high-resolution videos of multiple embryos under tightly controlled environmental conditions.
View Article and Find Full Text PDFImmune checkpoint therapies have shown tremendous promise in cancer therapy. However, tools to assess their target engagement, and hence the ability to predict their efficacy, have been lacking. Here, we show that target engagement and tumor-residence kinetics of antibody therapeutics targeting programmed death ligand-1 (PD-L1) can be quantified noninvasively.
View Article and Find Full Text PDFAutophagy can serve as a mechanism for survival of cells during nutrient deprivation by recycling cellular macromolecules and organelles transiently to provide essential metabolic substrates. However, autophagy itself causes metabolic stress to cells, and other cellular protective mechanisms likely cooperate with autophagy to promote cell survival during nutrient deprivation. In this study, we explored protective mechanisms in breast cancer cells in the setting of glucose deprivation.
View Article and Find Full Text PDFPredicting response to checkpoint blockade therapy for lung cancer has largely focused on measuring programmed death-ligand 1 (PD-L1) expression on tumor cells. PD-L1 expression is geographically heterogeneous within many tumors, however, and we questioned whether small tissue samples, such as biopsies, might be sufficiently representative of PD-L1 expression for evaluating this marker in lung cancer tumors. To evaluate the extent of variability of PD-L1 expression in small tissue samples, and how that variability affects accuracy of overall assessment of PD-L1 in lung cancer, we scored immunohistochemical staining for PD-L1 in tissue microarray cores from a series of 79 squamous cell lung cancers and 71 pulmonary adenocarcinomas.
View Article and Find Full Text PDFFatty acid synthase (FAS) is overexpressed in many human cancers and is considered to be a promising target for therapy. To investigate the expression of this candidate target in esophageal cancer, we evaluated expression of FAS protein in 22 cases of esophageal squamous cancer, 79 cases of esophageal adenocarcinoma and 16 cases of Barrett's esophagus with high-grade dysplasia--a lesion thought to represent a pre-invasive precursor to esophageal cancer. Using immunohistochemistry, we found significantly higher levels of FAS expression in 77% of the squamous cancers, 96% of the adenocarcinomas and 94% of the Barrett's lesions with high-grade dysplasia, when compared to levels in normal esophageal epithelium and non-dysplastic Barrett mucosa.
View Article and Find Full Text PDFPurpose: Fatty acid synthase (FAS) is overexpressed in lung cancer, and we have investigated the potential use of FAS inhibitors for chemoprevention of lung cancer.
Experimental Design: Expression of FAS was evaluated in preinvasive human lung lesions (bronchial squamous dysplasia and atypical adenomatous hyperplasia) and in murine models of lung tumorigenesis [4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone-induced and urethane-induced lung tumors in A/J mice]. Then, the ability of pharmacologic inhibitors of FAS to prevent development of the murine tumors was investigated.
A pharmaceutical grade extract of Coix lachryma-jobi seeds is currently the most commonly used treatment for cancer in China. Although clinical data support the use of this preparation of a Traditional Chinese Medicine for cancer treatment, biological basis for the activity of this preparation has not been previously established. To address this issue, we first evaluated the anti-neoplastic activity of a Coix extract emulsion in xenografts of MDA-MB-231 breast cancer cells and found that the extract significantly inhibits growth of MDA-MB-231 xenografts in athymic nude mice.
View Article and Find Full Text PDFPurpose: Most breast cancers have chromosomal instability that seems related to defective mitotic spindle checkpoints. Because the molecular basis of this defect is unknown, we evaluated breast cancer cell lines and tissues for possible defects involving the major mitotic checkpoint genes responsible for maintaining chromosomal stability.
Experimental Design: We analyzed sequences and expression levels (RNA and protein) of eight major spindle checkpoint genes (MAD1L1, MAD2L1, MAD2L2, BUB1, BUB1B, BUB3, CDC20, and TTK) in a panel of 12 breast cancer cell lines, most with established genetic instability and defective spindle damage checkpoint response.
Purpose: The polyamine analogue, N1, N11-diethylnorspermine (DENSpm), is currently being evaluated in clinical trials for the treatment of solid tumors. The response of solid tumors to this drug has been associated with superinduction of the polyamine catabolic enzyme, spermine/spermidine N1-acetyltransferase (SSAT). Therefore, to estimate the response of breast cancers to DENSpm, we measured induction of SSAT in breast cancer explants treated in vitro with this polyamine analogue.
View Article and Find Full Text PDF