Background: Patient and public involvement for co-creation is increasingly recognized as a valuable strategy to develop healthcare research targeting patients' real needs. However, its practical implementation is not as advanced and unanimously accepted as it could be, due to cultural differences and complexities of managing healthcare programs and clinical studies, especially in the rare disease field.
Main Body: The European Neuromuscular Centre, a European foundation of patient organizations, involved its key stakeholders in a special workshop to investigate the position of the neuromuscular patient community with respect to healthcare and medical research to identify and address gaps and bottlenecks.
Since 1992, the European Neuromuscular Centre facilitated workshops to bring experts in the field of neuromuscular disorders together. After organising more than 235 workshops, it is time to evaluate what impact these 25 years of ENMC workshops have had on the neuromuscular research field and on people affected by a neuromuscular condition. To measure this, workshop topics were retrospectively evaluated and bibliometric analyses on the citation scores of ENMC-derived publications were performed.
View Article and Find Full Text PDFIn the era of patient-centered medicine, shared decision-making (SDM) - in which healthcare professionals and patients exchange information and preferences and jointly reach a decision - has emerged as the gold standard model for the provision of formal healthcare. Indeed, in many geographical settings, patients are frequently invited to participate in choices concerning the design and delivery of their medical management. From a clinical perspective, benefits of this type of patient involvement encompass, for example, enhanced treatment satisfaction, improved medical compliance, better health outcomes, and maintained or promoted quality of life.
View Article and Find Full Text PDFBackground: Muscle fibrosis characterizes degenerated muscles in muscular dystrophies and in late onset myopathies. Fibrotic muscles often exhibit thickening of the extracellular matrix (ECM). The molecular regulation of this process is not fully understood.
View Article and Find Full Text PDFOculopharyngeal muscular dystrophy (OPMD) is a late onset disorder characterized by progressive weakening of specific muscles. It is caused by short expansions of the N-terminal polyalanine tract in the poly(A) binding protein nuclear 1 (PABPN1), and it belongs to the group of protein aggregation diseases, such as Huntington's, Parkinson's and Alzheimer diseases. Mutant PABPN1 forms nuclear aggregates in diseased muscles in both patients and animal models.
View Article and Find Full Text PDFBackground: Comparative analysis of expression microarray studies is difficult due to the large influence of technical factors on experimental outcome. Still, the identified differentially expressed genes may hint at the same biological processes. However, manually curated assignment of genes to biological processes, such as pursued by the Gene Ontology (GO) consortium, is incomplete and limited.
View Article and Find Full Text PDFBackground: Mouse models of inflammatory bowel diseases (IBD) are used to unravel the pathophysiology of IBD and to study new treatment modalities, but their relationship to Crohn's disease (CD) or ulcerative colitis (UC) is speculative.
Methods: Using Agilent mouse TOX oligonucleotide microarrays, we analyzed colonic gene expression profiles in three widely used models of experimental colitis. In 2 of the models (TNBS and DSS-induced colitis), exogenous agents induce the colitis.
FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy.
View Article and Find Full Text PDFDuchenne Muscular Dystrophy (DMD) is characterized by progressive muscle weakness and wasting. Despite the sustained presence of satellite cells in their skeletal muscles, muscle regeneration in DMD patients seems inefficient and unable to compensate for the continuous muscle fiber loss. To find a molecular explanation, we compared the gene expression profiles of myoblasts from healthy individuals and DMD patients during activation and differentiation in culture.
View Article and Find Full Text PDFTo study pathways involved in human skeletal myogenesis, we profiled gene expression in human primary myoblast cells derived from three individuals using both oligonucleotide and cDNA microarrays. Following stringent statistical testing (false-positive rate 0.4%), we identified 146 genes differentially expressed over time.
View Article and Find Full Text PDFBackground: In this study, we investigated the effect of genetic background on expression profiles. We analysed the transcriptome of mouse hindlimb muscle of five frequently used mouse inbred strains using spotted oligonucleotide microarrays.
Results: Through ANOVA analysis with a false discovery rate of 10%, we show that 1.
In two-colour microarrays, the ratio of signal intensities of two co-hybridized samples is used as a relative measure of gene expression. Ratio-based analysis becomes complicated and inefficient in multi-class comparisons. We therefore investigated the validity of an intensity-based analysis procedure.
View Article and Find Full Text PDFComparisons of expression levels across different cDNA microarray experiments are easier when a common reference is co-hybridized to every microarray. Often this reference consists of one experimental control sample, a pool of cell lines or a mix of all samples to be analyzed. We have developed an alternative common reference consisting of a mix of the products that are spotted on the array.
View Article and Find Full Text PDF