Group II activators of G-protein signaling (AGS) serve as binding partners for Gα(i/o/t) via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gα(il) in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells.
View Article and Find Full Text PDFRegulator of G protein Signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates both conventional and unconventional G protein signaling pathways. Like other RGS (regulator of G protein signaling) proteins, RGS14 acts as a GTPase accelerating protein to terminate conventional Gα(i/o) signaling. However, unlike other RGS proteins, RGS14 also contains a G protein regulatory/GoLoco motif that specifically binds Gα(i1/3)-GDP in cells and in vitro.
View Article and Find Full Text PDFActivator of G-protein signaling-4 (AGS4), via its three G-protein regulatory motifs, is well positioned to modulate G-protein signal processing by virtue of its ability to bind Galpha(i)-GDP subunits free of Gbetagamma. Apart from initial observations on the biochemical activity of the G-protein regulatory motifs of AGS4, very little is known about the nature of the AGS4-G-protein interaction, how this interaction is regulated, or where the interaction takes place. As an initial approach to these questions, we evaluated the interaction of AGS4 with Galpha(i1) in living cells using bioluminescence resonance energy transfer (BRET).
View Article and Find Full Text PDFRift Valley fever virus (RVFV) has been cited as a potential biological-weapon threat due to the serious and fatal disease it causes in humans and animals and the fact that this mosquito-borne virus can be lethal in an aerosolized form. Current human and veterinary vaccines against RVFV, however, are outdated, inefficient, and unsafe. We have incorporated the RVFV glycoprotein genes into a nonreplicating complex adenovirus (CAdVax) vector platform to develop a novel RVFV vaccine.
View Article and Find Full Text PDF