Publications by authors named "Ellen Lambrecht"

Hepatitis E virus is a prominent cause of viral hepatitis worldwide. In Western countries, most infections are asymptomatic. However, acute self-limiting hepatitis and chronic cases in immunocompromised individuals can occur.

View Article and Find Full Text PDF

Zoonotic hepatitis E virus (HEV) genotype 3 infections are the predominant cause of acute viral hepatitis in Europe, mostly associated with the consumption of HEV contaminated pork meat. In this study we looked at the HEV RNA positivity rate of pork meat products readily available from Belgian supermarkets and evaluated the overall HEV consumer exposure in a Belgian context. Two basic assessments were performed in a 'worst-case' scenario setting: one solely focusing on the contamination level of the product itself (ingredients and processing parameters) and another estimating the overall consumer exposure, taking into account consumption habits in Belgium.

View Article and Find Full Text PDF

The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs () and from a common carp (). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform.

View Article and Find Full Text PDF

Along with (in) direct contact with animals and a contaminated environment, humans are exposed to antibiotic-resistant bacteria by consumption of food. The implications of ingesting antibiotic-resistant commensal bacteria are unknown, as dose-response data on resistance transfer and spreading in our gut is lacking. In this study, transfer of a resistance plasmid (IncF), harbouring several antibiotic resistance genes, from a commensal strain towards human intestinal microbiota was assessed using a Mucosal Simulator of the Human Intestinal Ecosystem (M-SHIME).

View Article and Find Full Text PDF

Food-producing animals are indicated as a reservoir of antibiotic resistance genes and a potential vector for transmission of plasmid-encoded antibiotic resistance genes by conjugation to the human intestinal microbiota. In this study, transfer of an antibiotic resistance plasmid from a commensal E. coli originating from a broiler chicken towards the human intestinal microbiota was assessed by using a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME).

View Article and Find Full Text PDF

Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization.

View Article and Find Full Text PDF

The formation of robust resting cysts enables to resist harsh environmental conditions. This study investigated to what extent these cysts are resistant to physical and chemical stresses as applied in food industry cleaning and disinfection procedures. Moreover, it was assessed whether certain intracystic meat-borne bacterial pathogens are more stress resistant than free-living bacterial monocultures and if intracystic passage and subsequent association with trophozoites induces cross-tolerance toward other stressors.

View Article and Find Full Text PDF

The production of cysts, an integral part of the life cycle of many free-living protozoa, allows these organisms to survive adverse environmental conditions. Given the prevalence of free-living protozoa in food-related environments, it is hypothesized that these organisms play an important yet currently underinvestigated role in the epidemiology of foodborne pathogenic bacteria. Intracystic bacterial survival is highly relevant, as this would allow bacteria to survive the stringent cleaning and disinfection measures applied in food-related environments.

View Article and Find Full Text PDF

Cysts of free-living protozoa have an impact on the ecology and epidemiology of bacteria because they may act as a transmission vector or shelter the bacteria against hash environmental conditions. Detection and localization of intracystic bacteria and examination of the en- and excystment dynamics is a major challenge because no detailed protocols for ultrastructural analysis of cysts are currently available. Transmission electron microscopy (TEM) is ideally suited for those analyses; however, conventional TEM protocols are not satisfactory for cysts of free-living protozoa.

View Article and Find Full Text PDF