Many spectacular optical phenomena in animals are produced by reflective assemblies of guanine crystals. The crystals comprise planar H-bonded layers of π-stacked molecules with a high in-plane refractive index. By preferentially expressing the highly reflective π-stacked (100) crystal face and controlling its cross-sectional shape, organisms generate a diverse array of photonic superstructures.
View Article and Find Full Text PDFIn-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise.
View Article and Find Full Text PDFGlobal warming has prompted a search for new materials that capture and sink carbon dioxide (CO). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum).
View Article and Find Full Text PDFMolecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp.
View Article and Find Full Text PDFBiochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2020
When biochar (BC) is applied to soil, one process that can alter its properties and contaminant sorption is the leaching of minerals and dissolved organic carbon (DOC). This study investigated changes in properties of three BCs (cattle manure, grain husk, and wood chips), due to leaching, and the subsequent impact on sorption of trichloroethylene (TCE) and tetrachloroethylene (PCE). The manure-derived BC released 27.
View Article and Find Full Text PDFThe potential of biochar to enhance phytorestoration of hexavalent chromium [Cr(VI)]-contaminated soils was investigated. Rooted cuttings of Ficus elastica Roxb. Ex Hornem were transplanted to soil treated with 0 or 25 mg kg Cr(VI), ‒Cr and +Cr designations respectively, and amended with cattle manure-derived biochar at 0, 10 and 50 g kg.
View Article and Find Full Text PDFAdding biochar to Zn-contaminated soil can immobilize excess Zn and promote plant biomass growth. This was seen previously over the course of a 180-day planted pot trial involving two types of biochar (cattle manure, CM, and grain husk, GH) in a Zn-contaminated soil. Both biochars alleviated Zn-induced phytotoxicity to Ficus by immobilizing Zn and reducing its uptake by the plant, but to different extents.
View Article and Find Full Text PDFBiochar can enhance plant growth and reduce diseases, but frequently the optimal doses for these two benefits do not coincide. An approach is needed that will extend the range of biochar doses resulting in a concurrence of maximum benefits for both plant productivity and disease suppression. A biochar-amended growth medium was pre-conditioned by pre-planting fertigation in order to enhance the indigenous microbial community structure and activity.
View Article and Find Full Text PDFZinc (Zn) immobilization by two distinct biochars in soil, together with concomitant alleviation of phytotoxic responses in Ficus elastica Roxb. ex Hornem., were examined.
View Article and Find Full Text PDFSci Total Environ
March 2018
Recent studies have demonstrated the importance of the nutrient status of biochar and soils prior to its inclusion in particular agricultural systems. Pre-treatment of nutrient-reactive biochar, where nutrients are loaded into pores and onto surfaces, gives improved yield outcomes compared to untreated biochar. In this study we have used a wide selection of spectroscopic and microscopic techniques to investigate the mechanisms of nutrient retention in a high temperature wood biochar, which had negative effects on Chenopodium quinoa above ground biomass yield when applied to the system without prior nutrient loading, but positive effects when applied after composting.
View Article and Find Full Text PDFThis study tested whether soil-applied biochar can impact the seed germination and attachment of root parasitic weeds. Three hypotheses were evaluated: (i) biochar adsorbs host-exuded signaling molecules; (ii) biochar activates plants' innate system-wide defenses against invasion by the parasite; and (iii) biochar has a systemic influence on the amount of seed germination stimulant produced or released by the host plant. Three types of experiments were performed: (I) pot trials with tomato () infested with .
View Article and Find Full Text PDFBackground: The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L.
View Article and Find Full Text PDFBiochar, in addition to sequestering carbon, ameliorating soil, and improving plant performance, can impact foliar and soilborne plant diseases. Nevertheless, the mechanisms associated with suppression of soilborne diseases and improved plant performances are not well understood. This study is designed to establish the relationships between biochar-induced changes in rhizosphere microbial community structure, taxonomic and functional diversity, and activity with soilborne disease suppression and enhanced plant performance in a comprehensive fashion.
View Article and Find Full Text PDFThe 'biochar effect' depicts a phenomenon in which biochar soil amendment enhances plant performance by promoting growth and suppressing disease. Although this phenomenon has been observed in numerous studies, the mode of action that explains it is currently unknown. In order to elucidate mechanisms responsible for the 'biochar effect', we comprehensively monitored tomato plant development and resistance to the foliar fungal pathogen Botrytis cinerea, in biochar-amended and nonamended soils using native biochar and washed biochar, striped of labile chemical constituents.
View Article and Find Full Text PDFA large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions.
View Article and Find Full Text PDFUnderstanding the role of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillary tubes has theoretical and practical aspects alike. The specific and synergistic effects of these factors were studied theoretically using a mathematical model that includes inertial and dynamic contact angle terms. After validating the model for capillaries of uniform cross section, the model was extended to capillaries with sinusoidal modulations of the radius, since in practice, capillaries rarely have uniform cross-sections.
View Article and Find Full Text PDFAdding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils.
View Article and Find Full Text PDFBiochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper.
View Article and Find Full Text PDFElectrical conductivity (EC) logs were obtained by both open-borehole logging and passive multilevel sampling (MLS) in an observation borehole penetrating the Coastal Aquifer in Tel Aviv, Israel. Homogeneous vertical velocities for a 70-m thick subaquifer were approximated from each profile using a steady-state advection-diffusion model. The open-borehole log led to an overestimation of the steady-state upward advective flux of deep brines (vertical velocity of 0.
View Article and Find Full Text PDFConcentrations of chlorinated volatile organic compounds (Cl-VOCs) at the saturated-unsaturated interface region (SUIR; depth of approximately 18m) of a sandy phreatic aquifer were measured in two monitoring wells located 25m apart. The concentrations of the Cl-VOCs obtained above and below the water table along a 413-day period are interpreted to depict variable, simultaneous and independent movement of trichlorothene, tetrachloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, chloroform and 1,1-dichloroethane vapors in opposite directions across the SUIR.
View Article and Find Full Text PDFThis study presents, for the first time, field evidence of complete, irreversible processing of solid calcium carbonate (calcite)-containing particles and quantitative formation of liquid calcium nitrate particles apparently as a result of heterogeneous reaction of calcium carbonate-containing mineral dust particles with gaseous nitric acid. Formation of nitrates from individual calcite and sea salt particles was followed as a function of time in aerosol samples collected at Shoresh, Israel. Morphology and compositional changes of individual particles were observed using conventional scanning electron microscopy with energy dispersive analysis of X-rays (SEM/EDX) and computer controlled SEM/EDX.
View Article and Find Full Text PDFNatural organic matter (NOM) hydration is found to change activity-based sorption of test organic compounds by as much as 2-3 orders of magnitude, depending on the compound and the specific NOM sorbent. This is demonstrated for sorption on humin, humic acid, and the NOM source material. Hydration assistance in organic compound sorption correlates with the ability of the sorbate to interact strongly with hydrated sorbents, demonstrating the important role of noncovalent polar links in organizing the sorbent structure.
View Article and Find Full Text PDFInteractions of a wide set of organic compounds with model natural organic matter (NOM, Pahokee peat) were examined using a new approach that converts aqueous sorption to compound transfer from n-hexadecane to the hydrated NOM. This conversion accounts for solute-water interactions and applies the same inert reference medium for all compounds of interest, making it possible to classify sorbates according to the strength of sorbate-NOM interactions. Differences in strength of organic compound interactions in the sorbed phase as great as 4-5 orders of magnitude are demonstrated.
View Article and Find Full Text PDFThe purpose of this study was to test in the laboratory the performance of a passive multilayer sampler (MLS) for obtaining detailed profiles of gas-phase volatile organic compounds (VOCs) in unsaturated sediments. The MLS is essentially a chain of isolated, cylindrical stainless steel dialysis cells filled with distilled water and closed with membranes at both ends. The sampling principle is based on passive equilibration of the unsaturated zone gas phase with water in the cells.
View Article and Find Full Text PDF