Publications by authors named "Ellen G Duysen"

Background: This study used surveillance data from 2018 and 2020 to test the stability of work-related strain symptoms (high stress, sleep deprivation, exhaustion) with demographic factors, work characteristics, and musculoskeletal symptoms among farm and ranch operators in seven midwestern states of the United States.

Methods: Cross-sectional surveys were conducted among farm and ranch operators in 2018 (n = 4423) and 2020 (n = 3492). Operators were asked whether, in the past 12 months, they experienced extended work periods that resulted in high stress levels, sleep deprivation, exhaustion/fatigue, or other work-related strain symptoms.

View Article and Find Full Text PDF

The Bureau of Labor Statistics (BLS) publishes annual statistics on occupational injuries and fatalities in the United States. The BLS fatality data include all agricultural workers while the non-fatal injury data only cover hired employees on large farms. In 2012, the Central States Center for Agricultural Safety and Health (CS-CASH) began collecting regional media monitoring data of agricultural injury incidents to augment national statistics.

View Article and Find Full Text PDF

Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol.

View Article and Find Full Text PDF

Soman forms a stable, covalent bond with tyrosine 411 of human albumin, with tyrosines 257 and 593 in human transferrin, and with tyrosine in many other proteins. The pinacolyl group of soman is retained, suggesting that pinacolyl methylphosphonate bound to tyrosine could generate specific antibodies. Tyrosine in the pentapeptide RYGRK was covalently modified with soman simply by adding soman to the peptide.

View Article and Find Full Text PDF

Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity is an established biomarker of exposure to organophosphorus poisons (OP). Inhibition of activity is due to covalent binding of the OP to the active site serine. Mass spectrometry has made it possible to monitor OP exposure by analyzing OP adducts on tyrosine in proteins that have no active site serine.

View Article and Find Full Text PDF

Mouse blood contains four esterases that detoxify organophosphorus compounds: carboxylesterase, butyrylcholinesterase, acetylcholinesterase, and paraoxonase-1. In contrast human blood contains the latter three enzymes but not carboxylesterase. Organophosphorus compound toxicity is due to inhibition of acetylcholinesterase.

View Article and Find Full Text PDF

The LD(50) for soman is 10-20-fold higher for a mouse than a human. The difference in susceptibility is attributed to the presence of carboxylesterase in mouse but not in human plasma. Our goal was to make a mouse lacking plasma carboxylesterase.

View Article and Find Full Text PDF

The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months.

View Article and Find Full Text PDF

Death and toxicity after cocaine use do not correlate with cocaine blood levels. One explanation for this observation is that cocaine abusers may posses one or more of the 58 possible known mutations in the butyrylcholinesterase gene (BCHE). Butyrylcholinesterase (BChE) serves as the primary cocaine hydrolase producing a nontoxic product ecgonine methyl ester.

View Article and Find Full Text PDF

Electrophysiological and ultrastructural studies were performed on phrenic nerve-hemidiaphragm preparations isolated from wild-type and acetylcholinesterase (AChE) knockout (KO) mice to determine the compensatory mechanisms manifested by the neuromuscular junction to excess acetylcholine (ACh). The diaphragm was selected since it is the primary muscle of respiration, and it must adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were recorded by conventional electrophysiological techniques from phrenic nerve-hemidiaphragm preparations isolated from 1.

View Article and Find Full Text PDF

Gene delivery using an adenoviral system has been effective in introducing therapeutic proteins in vitro and in vivo. This study tested the feasibility of using adenovirus to deliver clinically relevant amounts of butyrylcholinesterase (BChE), a proven bioscavenger of nerve agents. The adenovirus construct expressed full-length mouse BChE.

View Article and Find Full Text PDF

The complete knockout of the acetylcholinesterase gene (AChE) in the mouse yielded a surprising phenotype that could not have been predicted from deletion of the cholinesterase genes in Drosophila, that of a living, but functionally compromised animal. The phenotype of this animal showed a sufficient compromise in motor function that precluded precise characterization of central and peripheral nervous functional deficits. Since AChE in mammals is encoded by a single gene with alternative splicing, additional understanding of gene expression might be garnered from selected deletions of the alternatively spliced exons.

View Article and Find Full Text PDF

Exposure to organophosphorus (OP) agents can lead to learning and memory deficits. Disruption of axonal transport has been proposed as a possible explanation. Microtubules are an essential component of axonal transport.

View Article and Find Full Text PDF

Background: The acetylcholinesterase knock-out mouse lives to adulthood despite 60-fold elevated acetylcholine concentrations in the brain that are lethal to wild-type animals. Part of its mechanism of survival is a 50% decrease in muscarinic and nicotinic receptors and a 50% decrease in adrenoceptor levels.

Hypothesis: The hypothesis was tested that the dopaminergic neuronal system had also adapted.

View Article and Find Full Text PDF

Acute toxicity of organophosphorus poisons (OP) is explained by inhibition of acetylcholinesterase in nerve synapses. Low-dose effects are hypothesized to result from modification of other proteins, whose identity is not yet established. The goal of the present work was to obtain information that would make it possible to identify tubulin as a target of OP exposure.

View Article and Find Full Text PDF

Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents. We have showed previously that recombinant (r) Hu BChE can be expressed at very high levels, 400 to 600 U/ml in mouse blood, by delivering the Hu BChE gene using adenovirus (Ad). Here, we report the biochemical properties of the Ad-expressed full-length and truncated rHu BChE in mouse blood.

View Article and Find Full Text PDF

Purpose: Alzheimer s disease is characterized by a dysfunction of central cholinergic systems and is treated by inhibitors of acetylcholinesterase (AChE). This study tests the effect of two AChE inhibitors in therapeutic use, rivastigmine and donepezil, in mice that are devoid of AChE (AChE-/- mice). Rivastigmine is an inhibitor of both AChE and butyrylcholinesterase (BChE) whereas donepezil is a selective inhibitor of AChE.

View Article and Find Full Text PDF

Exogenously delivered butyrylcholinesterase (BChE) has proven to be an efficient bioscavenger against highly toxic organophosphorus poisons and nerve agents. The scavenger properties of BChE when delivered via intramuscular, intravenous, subcutaneous, or intraperitoneal routes are limited to the body's peripheral sites because the 340 kDa enzyme does not cross the blood-brain barrier (BBB). Overcoming the BBB is an important step toward evaluating the neuroprotective properties of BChE within the central nervous system (CNS).

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) mutations common in the human population may result in complete or partial BChE deficiency, making the BChE knockout (KO) mouse a model for human deficiencies. The BChE KO mouse cannot tolerate standard doses of the muscle relaxant succinylcholine or the Alzheimer's disease drugs huperzine A and donepezil. It is resistant to the asthma drug bambuterol.

View Article and Find Full Text PDF

In mice, cocaine is detoxified to inactive products by butyrylcholinesterase (BChE) and carboxylesterase. In human beings, cocaine detoxification is primarily by BChE. The focus of this investigation was to elucidate the importance of BChE in reducing pathophysiological effects following cocaine exposure.

View Article and Find Full Text PDF

Human serum butyrylcholinesterase (Hu BChE) is a promising therapeutic against the toxicity of chemical warfare nerve agents, pesticide intoxication, and cocaine overdose. However, its widespread application is hampered by difficulties in large-scale production of the native protein from human plasma and/or availability as a recombinant protein suitable for use in vivo. This limitation may be resolved by in vivo delivery and expression of the Hu BChE gene.

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) has proven to be an effective bioscavenger against nerve agents and organophosphates. Phase I safety trials of human BChE are currently being conducted and large-scale production of recombinant BChE is underway. Information on the real-time distribution of BChE from the injection site has not been well characterized.

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) inactivates the appetite stimulating hormone octanoyl-ghrelin. The hypothesis was tested that BChE-/- mice would have abnormally high body weight and high levels of octanoyl-ghrelin. It was found that BChE-/- mice fed a standard 5% fat diet had normal body weight.

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) is an important enzyme for metabolism of ester drugs. Many humans have partial or complete BChE deficiency due to genetic variation. Our goal was to create a mouse model of BChE deficiency to allow testing of drug toxicity.

View Article and Find Full Text PDF

Mice deficient for acetylcholinesterase (AChE) have strongly increased extracellular levels of acetylcholine (ACh) in the dorsal hippocampus [Hartmann, J., Kiewert, C., Duysen, E.

View Article and Find Full Text PDF