Publications by authors named "Ellen Armour"

Nucleocytoplasmic transport (NCT) in neurons is critical for enabling proteins to enter the nucleus and regulate plasticity genes in response to environmental cues. Such experience-dependent (ED) neural plasticity is central for establishing memory formation and cognitive function and can influence the severity of neurodegenerative disorders like Alzheimer's disease (AD). ED neural plasticity is driven by histone acetylation (HA) mediated epigenetic mechanisms that regulate dynamic activity-dependent gene transcription profiles in response to neuronal stimulation.

View Article and Find Full Text PDF

The severity of Alzheimer's disease (AD) progression involves a complex interplay of genetics, age, and environmental factors orchestrated by histone acetyltransferase (HAT)-mediated neuroepigenetic mechanisms. While disruption of Tip60 HAT action in neural gene control is implicated in AD, alternative mechanisms underlying Tip60 function remain unexplored. Here, we report a novel RNA binding function for Tip60 in addition to its HAT function.

View Article and Find Full Text PDF

Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer's Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes.

View Article and Find Full Text PDF

Amyloid-β (Aβ) peptides can form protease-resistant aggregates within and outside of neurons. Accumulation of these aggregates is a hallmark of Alzheimer's disease (AD) neuropathology and contributes to devastating cognitive deficits associated with this disorder. The primary etiological factor for Aβ aggregation is either an increase in Aβ production or a decrease in its clearance.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder hallmarked by amyloid-β (Aβ) plaque accumulation, neuronal cell death, and cognitive deficits that worsen during disease progression. Histone acetylation dysregulation, caused by an imbalance between reduced histone acetyltransferases (HAT) Tip60 and increased histone deacetylase 2 (HDAC2) levels, can directly contribute to AD pathology. However, whether such AD-associated neuroepigenetic alterations occur in response to Aβ peptide production and can be protected against by increasing Tip60 levels over the course of neurodegenerative progression remains unknown.

View Article and Find Full Text PDF

Infection can result in substantial costs to animals, so they frequently respond by removing infectious agents with an immune response. However, immune responses entail their own costs, including upregulation of processes that destroy pathogens (e.g.

View Article and Find Full Text PDF

When exposed to stressors, animals physiologically respond by secreting glucocorticoid hormones. Most birds, reptiles, and amphibians secrete corticosterone (CORT), which allows them to maximize short-term survival, including by modulating lipid metabolism. However, the factors regulating lipid metabolism, particularly during acute (i.

View Article and Find Full Text PDF