Curr Opin Struct Biol
December 2024
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme.
View Article and Find Full Text PDFA single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction.
View Article and Find Full Text PDFFragment-based drug discovery begins with the identification of small molecules with a molecular weight of usually less than 250 Da which weakly bind to the protein of interest. This technique is challenging for computational docking methods as binding is determined by only a few specific interactions. Inaccuracies in the energy function or slight deviations in the docking pose can lead to the prediction of incorrect binding or difficulties in ranking fragments in screening.
View Article and Find Full Text PDF