Publications by authors named "Elle J Bowd"

Article Synopsis
  • * The study investigates how three disturbance types—clearcut logging with slash burning, severe wildfire with salvage logging, and severe wildfire alone—impact early-successional forests in southeastern Australia over 14 years.
  • * Results show that wildfire-affected forests recover more robustly in plant diversity and structure compared to those impacted by clearcut and salvage logging, the latter negatively impacting plant richness for over a decade.
View Article and Find Full Text PDF

Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire.

View Article and Find Full Text PDF

Wildfires have the potential to add considerably to the already significant challenge of achieving effective forest restoration in the UN Decade on Ecosystem Restoration. While fire can sometimes promote forest restoration (e.g.

View Article and Find Full Text PDF

Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests.

View Article and Find Full Text PDF

Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post​ disturbance and is triggered by a series of abiotic and biotic changes. However, the long-term influence of different disturbance histories on patterns of seedling emergence is poorly understood.

View Article and Find Full Text PDF

Human and natural disturbances are key drivers of change in forest ecosystems. Yet, the direct and indirect mechanisms which underpin these changes remain poorly understood at the ecosystem level. Here, using structural equation modelling across a 150+ year chronosequence, we disentangle the direct and indirect effects of major disturbances in a temperate forest ecosystem.

View Article and Find Full Text PDF

Disturbances are key drivers of plant community composition, structure, and function. Plant functional traits, including life forms and reproductive strategies are critical to the resilience and resistance of plant communities in the event of disturbance. Climate change and increasing anthropogenic disturbance are altering natural disturbance regimes globally.

View Article and Find Full Text PDF