The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-delta) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-delta mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that D-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation ("metabolic poison").
View Article and Find Full Text PDFNeuropsychopharmacology
March 2006
Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics.
View Article and Find Full Text PDF1. It has been suggested that Na+/K(+)-ATPase and Na(+)-dependent glutamate transport (GluT) are tightly linked in brain tissue. In the present study, we have investigated Na+/K(+)-ATPase activity using Rb+ uptake by 'minislices' (prisms) of the cerebral cortex.
View Article and Find Full Text PDF