Publications by authors named "Ellappan Babu"

Based on the evidence that hemochromatosis, an iron-overload disease, drives hepatocellular carcinoma, we hypothesized that chronic exposure to excess iron, either due to genetic or environmental causes, predisposes an individual to cancer. Using pancreatic cancer as our primary focus, we employed cell culture studies to interrogate the connection between excess iron and cancer, and combined and studies to explore the connection further. Ferric ammonium citrate was used as an exogenous iron source.

View Article and Find Full Text PDF

Purpose: β-Hydroxy-β-methylbutyrate (HMB), a nutritional supplement, elicits anabolic activity in muscle. Here we investigated the mechanism of HMB uptake in muscle cells.

Methods: Murine muscle cells (C2C12) and human mammary epithelial cells (MCF7) were used for uptake.

View Article and Find Full Text PDF

NaCT is a Na-coupled transporter for citrate expressed in hepatocytes and neurons. It is the mammalian ortholog of INDY (I'm Not Dead Yet), a transporter which modifies lifespan in Drosophila. Here we describe a hitherto unknown transport system for citrate in mammalian cells.

View Article and Find Full Text PDF

Nutrient tranters (NT) facilitate nutrient absorption and contribute to the regulation of circulating nutrients. In this cross-sectional study, we determined the associations between the level of obesity; mRNA abundance for NTs; and serum concentrations of amino acids, short-chain fatty acids, and glucose in patients with morbid obesity undergoing a Roux-en-Y gastric bypass. Proximal jejunal samples were obtained at the time of surgery from 42 patients (90% female, age = 42.

View Article and Find Full Text PDF

Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs.

View Article and Find Full Text PDF

The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors.

View Article and Find Full Text PDF

SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo.

View Article and Find Full Text PDF

Tumor cells have an increased demand for amino acids because of their rapid proliferation rate. In addition to their need in protein synthesis, several amino acids have other roles in supporting cancer growth. There are approximately two-dozen amino acid transporters in humans, and tumor cells must upregulate one or more of these transporters to satisfy their demand for amino acids.

View Article and Find Full Text PDF

NaCT (SLC13A5) is a Na(+)-coupled transporter for Krebs cycle intermediates and is expressed predominantly in the liver. Human NaCT is relatively specific for citrate compared with other Krebs cycle intermediates. The transport activity of human NaCT is stimulated by Li(+), whereas that of rat NaCT is inhibited by Li(+).

View Article and Find Full Text PDF

IDO1, which encodes the immunosuppressive and tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-1 (IDO1), is a target for interferon-γ (IFN-γ). IDO1-mediated tryptophan catabolism in dendritic cells and macrophages arrests T cell proliferation, thereby providing a molecular basis for the immunosuppressive function of IDO1. Whether the entry of tryptophan into IDO1-expressing cells is also regulated by IFN-γ is not known.

View Article and Find Full Text PDF

SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRAS(G12V)) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors.

View Article and Find Full Text PDF

Purpose: Oxidative stress is a common pathological factor in degenerative retinal diseases; therefore, identifying novel strategies for its limitation is critically important and highly relevant clinically. Along these lines, our present goal was to evaluate the effect(s) of the fumarate ester and antipsoriatic agent monomethylfumarate (MMF) on the expression and functional activity of the cystine/glutamate exchanger SLC7A11 (system xc(-)), a transport system critical to potentiation of antioxidant signaling in retina.

Methods: ARPE-19 and primary mouse RPE cells were cultured in the presence or absence of varying concentrations of MMF (0-5000 μM) for 0 to 24 hours.

View Article and Find Full Text PDF

Plasma membrane monoamine transporter (PMAT) is a polyspecific organic cation (OC) transporter that transports a variety of endogenous biogenic amines and xenobiotic cations. Previous radiotracer uptake studies showed that PMAT-mediated OC transport is sensitive to changes in membrane potential and extracellular pH, but the precise role of membrane potential and protons on PMAT-mediated OC transport is unknown. Here, we characterized the electrophysiological properties of PMAT in Xenopus laevis oocytes using a two-microelectrode voltage-clamp approach.

View Article and Find Full Text PDF

SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues.

View Article and Find Full Text PDF

Purpose: To evaluate the role of SLC5A8 in the transport of 2-oxothiazolidine-4-carboxylate (OTC) and to determine whether OTC augments glutathione production in RPE cells, thereby providing protection against oxidative stress.

Methods: SLC5A8-mediated transport of OTC was monitored in Xenopus laevis oocytes by electrophysiological means. Saturation kinetics, Na(+)-activation kinetics, and inhibition by ibuprofen were analyzed by monitoring OTC-induced currents as a measure of transport activity.

View Article and Find Full Text PDF

Aristolochic acids (AAs), contained in Chinese herbal preparations, have been considered to induce nephropathy. In order to elucidate the molecular mechanisms of AA-induced nephrotoxicity, we have elucidated the interaction of human organic anion transporters (hOATs) with AAs using their stable cell lines. AA-I and AA-II inhibited organic anion uptake by hOAT1, hOAT3, and hOAT4 in dose-dependent manners.

View Article and Find Full Text PDF

Pyroglutamate, also known as 5-oxoproline, is a structural analog of proline. This amino acid derivative is a byproduct of glutathione metabolism, and is reabsorbed efficiently in kidney by Na(+)-coupled transport mechanisms. Previous studies have focused on potential participation of amino acid transport systems in renal reabsorption of this compound.

View Article and Find Full Text PDF

SMCT1 is a Na(+)-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1.

View Article and Find Full Text PDF

LAT3 is a Na+-independent neutral l-amino acid transporter recently isolated from a human hepatocellular carcinoma cell line. Although liver, skeletal muscle, and pancreas are known to express LAT3, the tissue distribution and physiologic function of this transporter are not completely understood. Here, we observed that glomeruli express LAT3.

View Article and Find Full Text PDF

Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells.

View Article and Find Full Text PDF

We recently cloned the human Na(+)-independent system L neutral amino acid transporter LAT3. The aim of the present study was to characterize the molecular nature of mouse LAT3 at the protein level. Isolated mouse LAT3 showed 83% identity to human LAT3.

View Article and Find Full Text PDF

Hartnup disorder, an autosomal recessive defect named after an English family described in 1956 (ref. 1), results from impaired transport of neutral amino acids across epithelial cells in renal proximal tubules and intestinal mucosa. Symptoms include transient manifestations of pellagra (rashes), cerebellar ataxia and psychosis.

View Article and Find Full Text PDF

The tubular secretion of diuretics in the proximal tubule has been shown to be critical for the action of drugs. To elucidate the molecular mechanisms for the tubular excretion of diuretics, we have elucidated the interactions of human organic anion transporters (hOATs) with diuretics using cells stably expressing hOATs. Diuretics tested were thiazides, including chlorothiazide, cyclothiazide, hydrochlorothiazide, and trichlormethiazide; loop diuretics, including bumetanide, ethacrynic acid, and furosemide; and carbonic anhydrase inhibitors, including acetazolamide and methazolamide.

View Article and Find Full Text PDF

A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: