Background: Alveolar macrophages (AM) in COPD have fundamentally impaired responsiveness to Toll-like receptor 2 (TLR2) and TLR4 ligands of non-typeable Haemophilus influenzae (NTHI). However, the contribution of innate immune dysfunction to exacerbations of COPD is unexplored. We hypothesised that impaired innate AM responses in COPD extend beyond NTHI to other pathogens and are linked with COPD exacerbations and severity.
View Article and Find Full Text PDFBackground: Alveolar macrophages in chronic obstructive pulmonary disease (COPD) have fundamental impairment of phagocytosis for nontypeable Haemophilus influenzae (NTHI). However, relative selectivity of dysfunctional phagocytosis among diverse respiratory pathogens: NTHI, Moraxella catarrhalis (MC), Streptococcus pneumoniae (SP), and nonbacterial particles, as well as the contribution of impaired phagocytosis to severity of COPD, has not been explored.
Methods: Alveolar macrophages, obtained from nonsmokers (n = 20), COPD ex-smokers (n = 32), and COPD active smokers (n = 64), were incubated with labeled NTHI, MC, SP, and fluorescent microspheres.
Study Objective: To determine whether the pharmacokinetics of atazanavir, a protease inhibitor used to treat human immunodeficiency virus (HIV) infection, are altered by its coadministration with lansoprazole, a proton pump inhibitor.
Design: Single-dose, open-label, complete-crossover study.
Setting: Clinical research center.