Aims: Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.
View Article and Find Full Text PDFA glucose tolerance test (GTT) is routinely used to assess glucose homeostasis in clinical settings and in preclinical research studies using rodent models. The procedure assesses the ability of the body to clear glucose from the blood in a defined time after a bolus dose. In the human clinical setting, glucose is ingested via voluntary consumption of a glucose-sweetened drink.
View Article and Find Full Text PDFThe mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain.
View Article and Find Full Text PDFThe mitochondrial translocator protein 18kDa (TSPO) has been linked to a variety of functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in the periphery using Leydig cells and hepatocytes, as well as work in microglia, indicate that the function of TSPO may vary between cells depending on their specialised roles. Astrocytes are critical for providing trophic and metabolic support in the brain as part of their role in maintaining brain homeostasis.
View Article and Find Full Text PDFThe dorsal vagal complex (DVC) regulates diverse aspects of physiology including food intake and blood glucose homeostasis. Astrocytes play an active role in regulating DVC function and, by extension, physiological parameters. DVC astrocytes in ex vivo slices respond to low tissue glucose.
View Article and Find Full Text PDFAstrocytes contribute to glutamatergic signalling, which is required for hypoglycaemia counterregulation and is impaired by recurrent insulin-induced hypoglycaemia. This study examined the glutamate response of astrocytes when challenged with acute and recurrent low glucose (RLG) exposure. The metabolic responses of cortical (CRTAS) and hypothalamic (HTAS) primary rat astrocytes were measured in acute and recurrent low glucose using extracellular flux analyses.
View Article and Find Full Text PDFAim: We evaluated the efficacy of a novel brain permeable "metformin-like" AMP-activated protein kinase activator, R481, in regulating glucose homeostasis.
Materials And Methods: We used glucose sensing hypothalamic GT1-7 neuronal cells and pancreatic αTC1.9 α-cells to examine the effect of R481 on AMPK pathway activation and cellular metabolism.
The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes.
View Article and Find Full Text PDFTime-restricted feeding (TRF) studies underscore that food is consumed during the daily cycle is important for weight gain/loss because the circadian clock rhythmically modulates metabolism. However, the interpretation of previous TRF studies has been confounded by study designs that introduced an extended period of enforced fasting. We introduce a novel time-optimized feeding (TOF) regimen that disentangles the effects of phase-dependent feeding from the effects of enforced fasting in mice, as well as providing a laboratory feeding protocol that more closely reflects the eating patterns of humans who usually have 24 hour access to food.
View Article and Find Full Text PDFChanges in mitochondrial function in a variety of cells/tissues are critical for orchestrating systemic energy homeostasis and are linked to the development of obesity and many of its comorbidities. The mitochondrial translocator protein of 18 kDa (TSPO) is expressed in organs throughout the body, including the brain, liver, adipose tissue, gonads and adrenal glands, where it is implicated in regulating steroidogenesis and cellular metabolism. Prior work from our group and others has shown that, in rodents, TSPO levels are altered in adipose tissue by obesity and that modulation of TSPO activity may impact systemic glucose homeostasis.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2021
Tight regulation of blood glucose is essential for long term health. Blood glucose levels are defended by the correct function of, and communication between, internal organs including the gastrointestinal tract, pancreas, liver, and brain. Critically, the brain is sensitive to acute changes in blood glucose level and can modulate peripheral processes to defend against these deviations.
View Article and Find Full Text PDFThe nucleus of the solitary tract (NTS) is the primary brainstem centre for the integration of physiological information from the periphery transmitted via the vagus nerve. In turn, the NTS feeds into downstream circuits regulating physiological parameters. Astrocytes are glial cells which have key roles in maintaining CNS tissue homeostasis and regulating neuronal communication.
View Article and Find Full Text PDFInflammation and metabolism are intrinsically linked with inflammatory stimuli inducing metabolic changes in cells and, in turn, metabolic capacity determining cellular inflammatory responses. Although well characterized in peripheral immune cells there is comparatively less known about these "immunometabolic" responses in astrocytes. In this study, we tested the hypothesis that the astrocytic inflammatory response driven by nuclear factor-kappa B (NF-κB) signaling is dependent on glycolytic metabolism.
View Article and Find Full Text PDFThe hypothalamic ventromedial nucleus (VMN) is involved in maintaining systemic glucose homeostasis. Neurophysiological studies in rodent brain slices have identified populations of VMN glucose-sensing neurones: glucose-excited (GE) neurones, cells which increased their firing rate in response to increases in glucose concentration, and glucose-inhibited (GI) neurones, which show a reduced firing frequency in response to increasing glucose concentrations. To date, most slice electrophysiological studies characterising VMN glucose-sensing neurones in rodents have utilised the patch clamp technique.
View Article and Find Full Text PDFA role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake.
View Article and Find Full Text PDFChronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly.
View Article and Find Full Text PDFA class of glial cell, astrocytes, is highly abundant in the central nervous system (CNS). In addition to maintaining tissue homeostasis, astrocytes regulate neuronal communication and synaptic plasticity. There is an ever-increasing appreciation that astrocytes are involved in the regulation of physiology and behaviour in normal and pathological states, including within neuroendocrine systems.
View Article and Find Full Text PDFAims/hypothesis: Hypoglycaemia is a major barrier to good glucose control in type 1 diabetes. Frequent hypoglycaemic episodes impair awareness of subsequent hypoglycaemic bouts. Neural changes underpinning awareness of hypoglycaemia are poorly defined and molecular mechanisms by which glial cells contribute to hypoglycaemia sensing and glucose counterregulation require further investigation.
View Article and Find Full Text PDFLike most homeostatic systems, adiposity in mammals is defended between upper and lower boundary conditions. While leptin and melanocortin-4 receptor (MC4R) signaling are required for defending energy set point, mechanisms controlling upper and lower homeostatic boundaries are less well understood. In contrast to the MC4R, deletion of the MC3R does not produce measurable hyperphagia or hypometabolism under normal conditions.
View Article and Find Full Text PDFOur understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology.
View Article and Find Full Text PDFAim: To test the hypothesis that, given the role of AMP-activated protein kinase (AMPK) in regulating intracellular ATP levels, AMPK may alter ATP release from astrocytes, the main sources of extracellular ATP (eATP) within the brain.
Materials And Methods: Measurements of ATP release were made from human U373 astrocytoma cells, primary mouse hypothalamic (HTAS) and cortical astrocytes (CRTAS) and wild-type and AMPK α1/α2 null mouse embryonic fibroblasts (MEFs). Cells were treated with drugs known to modulate AMPK activity: A-769662, AICAR and metformin, for up to 3 hours.
Objective: Introduction of a high-fat diet to mice results in a period of voracious feeding, known as hyperphagia, before homeostatic mechanisms prevail to restore energy intake to an isocaloric level. Acute high-fat diet hyperphagia induces astrocyte activation in the rodent hypothalamus, suggesting a potential role of these cells in the homeostatic response to the diet. The objective of this study was to determine physiologic role of astrocytes in the acute homeostatic response to high-fat feeding.
View Article and Find Full Text PDFFront Syst Neurosci
November 2014
The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently, studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis.
View Article and Find Full Text PDFS100B is a calcium binding protein found in adipose tissue; however, relatively little is known about the physiologic regulation or distribution of the protein within this organ. We examined plasma S100B concentration and white adipose tissue (WAT) s100b mRNA levels in lean and diet-induced obese (DIO) mice. Plasma S100B levels were increased by obesity.
View Article and Find Full Text PDF