Anatomical/physiological gastrointestinal changes after bariatric surgery may influence the fate of orally administered drugs.Since non-selective NSAIDs are not well-tolerated post-surgery, selective cyclooxygenase-2 (COX-2) inhibitors may be important for these patients. In this work we investigated celecoxib, etoricoxib and etodolac, for impaired post-bariatric solubility/dissolution and absorption.
View Article and Find Full Text PDFGastrointestinal anatomical/physiological changes after bariatric surgery influence variables affecting the fate of drugs after ingestion, and medication management of these patients requires a thorough and complex mechanistic analysis. The aim of this research was to study whether loratadine/desloratadine antiallergic treatment of bariatric patients is at risk of being ineffective due to impaired solubility/dissolution. The pH-dependent solubility of loratadine/desloratadine was studied in vitro, as well as ex vivo, in gastric content aspirated from patients before versus after bariatric surgery.
View Article and Find Full Text PDFBariatric surgery is an effective treatment of obesity and related comorbidities. With surgery, the stomach undergoes major anatomical/physiological changes that may affect the oral exposure of drugs, especially marginally soluble weak bases, such as lamotrigine. The aim of this work was to study the solubility/dissolution of lamotrigine in conditions simulating the stomach before vs.
View Article and Find Full Text PDFImbalanced one carbon metabolism and aberrant autophagy is robustly reported in patients with autism. Polymorphism in the gene methylenetetrahydrofolate reductase (Mthfr), encoding for a key enzyme in this pathway is associated with an increased risk for autistic-spectrum-disorders (ASDs). Autistic-like core and associated behaviors have been described, with contribution of both maternal and offspring Mthfr genotype to the different domains of behavior.
View Article and Find Full Text PDFConverging evidence indicates that orexins (ORXs), the regulatory neuropeptides, are implicated in anxiety- and depression-related behaviors via the modulation of neuroendocrine, serotonergic, and noradrenergic systems. This study evaluated the role of the orexinergic system in stress-associated physiological responses in a controlled prospective animal model. The pattern and time course of activation of hypothalamic ORX neurons in response to predator-scent stress (PSS) were examined using c-Fos as a marker for neuronal activity.
View Article and Find Full Text PDFNeuropeptide S (NPS) is a regulatory peptide that has anxiolytic and arousal-promoting effects in rodents. We used an animal model of posttraumatic stress disorder (PTSD) to assess long-term behavioral effects of a single dose of NPS, microinjected into the basolateral amygdala (BLA) 1h following exposure to predator-scent stress (PSS). To elucidate the molecular mechanism by which NPS attenuates behavioral stress responses, expression levels of neuropeptide Y (NPY), NPY-Y1 receptor (NPY-Y1R), and brain-derived neurotrophic factor (BDNF) were evaluated in the hippocampus.
View Article and Find Full Text PDFBackground: Glycogen synthase kinase-3 (GSK-3) inhibition by lithium has been well established in vitro, but proof that this biochemical effect mediates lithium's beneficial action in patients with bipolar disorder is lacking. We studied whether lymphocyte GSK-3β activity measured indirectly in lithium- or valproate (VPA)-treated euthymic patients with bipolar disorder is different from controls.
Methods: Lymphocyte total and Ser-9-phospho-GSK-3β (inactive) levels were measured by Western blotting.
Emerging literature points to stress exposure as a potential contributor to the development of alcohol abuse, but animal models have yielded inconsistent results. Converging experimental data indicate that the endogenous opioid system modulates alcohol consumption and stress regulation. The aim of the present study is to examine the interplay between stress exposure, behavioral stress responses, ethanol (EtOH) consumption and the endogenous opioid system in an animal model of posttraumatic stress disorder.
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD.
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12).
View Article and Find Full Text PDF