Publications by authors named "Ella S M Ng"

Purpose: Tamoxifen is a key therapeutic option for breast cancer treatment. Understanding its complex metabolism and pharmacokinetics is important for dose optimization. We examined the possibility of utilizing archival formalin-fixed paraffin-embedded (FFPE) tissue as an alternative sample source for quantification since well-annotated retrospective samples were always limited.

View Article and Find Full Text PDF

An improved quantitative assay was developed and validated for fludarabine in human plasma. Fludarabine and its internal standard, cladribine, were separated on a C18 analytical column after sample purification by strong anion-exchange solid-phase extraction. Quantitation was performed by electrospray triple-quadrupole mass spectrometry in positive ionization mode using multiple-reaction monitoring.

View Article and Find Full Text PDF

Blood samples from wild mammals and birds are often limited in volume, allowing researchers to quantify only one or two steroids from a single sample by immunoassays. In addition, wildlife serum or plasma samples are often lipemic, necessitating stringent sample preparation. Here, we validated sample preparation for simultaneous liquid chromatography--tandem mass spectrometry (LC-MS/MS) quantitation of cortisol, corticosterone, 11-deoxycortisol, dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, 17α-hydroxyprogesterone and testosterone from diverse mammalian (7 species) and avian (5 species) samples.

View Article and Find Full Text PDF

Intravenous (i.v.) busulfan (Bu) administered once daily in myeloablative transplant regimens is convenient, effective, and relatively well tolerated.

View Article and Find Full Text PDF

Frontal affinity chromatography (FAC) is a biophysical method for the discovery and characterization of molecular interactions in a flow-based system. Several different modes of analysis are possible by interfacing to the mass spectrometer, including robust single-compound characterizations as well as high-throughput screening of over 1,000 compounds per run. The method supports thermodynamic and kinetic characterization of interactions for a wide range of molecular species and possesses similarities to flow-based biosensors such as surface plasmon resonance.

View Article and Find Full Text PDF

Our previous studies demonstrated that light-induced vascular relaxation (photorelaxation) was mediated by a tissue source of nitric oxide that was independent of endothelial nitric oxide synthase (eNOS), but sensitive to inhibitors of soluble guanylate cyclase, extracellular nitric oxide scavengers and possessed the properties of a nitrosothiol. In the present study we describe High Performance Liquid Chromatography and spectrofluorometric techniques that allowed us to measure tissue levels of the nitrosothiol, S-nitrosoglutathione and its modulation in mouse aortic tissues, smooth muscle cells and human umbilical vein endothelial cells (HUVECs) following exposure to exogenous S-nitrosoglutathione, light and chemical stimuli. Basal levels of S-nitrosoglutathione were similar in control mouse aortae and HUVECs and the store size could be enhanced by exposure of tissues/cells to nitric oxide solution.

View Article and Find Full Text PDF

This work presents new frontal affinity chromatography (FAC) methodologies for high-throughput screening of compound libraries, designed to increase screening rates and improve sensitivity and ruggedness in performance. A FAC column constructed around the enzyme N-acetylglucosaminyltransferase V (GnT-V) was implemented in the identification of potential enzyme inhibitors from two libraries of trisaccharides. Effluent from the FAC column was fractionated, sequentially processed via LC/MS, and referenced to a similar analysis through a control FAC column lacking the enzyme.

View Article and Find Full Text PDF

In this review we discuss the contribution of NO, prostacyclin and endothelium-derived relaxing factor--endothelium-derived hyperpolarizing factor, or EDHF, to vascular function. We also explore the hypotheses (1): that tissues can store NO as nitrosothiols (RSNOs) and (2) that such RSNO stores can be modulated by physiological and pathophysiological processes. Notably in the microcirculation, EDHF appears to play an important role in the regulation of vascular tone.

View Article and Find Full Text PDF

In the present study, we investigated whether inhaled nitric oxide (NO) was transported by plasma proteins, such as S-nitroso-albumin (SNO-Alb), in the feline circulation and whether this molecule delivers NO to the periphery under conditions of stress, specifically ischemia/reperfusion (I/R). A flow probe was interposed between the femoral and superior mesenteric artery for blood flow measurements, and a branch of the superior mesenteric vein was cannulated for arterial-venous sampling. In animals breathing room air, SNO-Alb was below detection level in arterial or venous blood.

View Article and Find Full Text PDF

Recent work has demonstrated that inhalation of nitric oxide (NO) can impact the peripheral vasculature, suggesting that an NO-stabilizing moiety may exist in vivo. One possibility is the formation of S-nitrosothiols, which extend the half-life of NO manyfold. In this review, we provide evidence that S-nitrosothiols exist in the vasculature, particularly during NO inhalation.

View Article and Find Full Text PDF

The aim of these experiments was to determine the contribution of leukocyte-derived iNOS to total iNOS expression induced by lipopolysaccharide (LPS). By transferring bone marrow between iNOS+/+ and iNOS-/- mice, we created chimeric mice in which iNOS expression was limited to either circulating leukocytes (leukocyte-iNOS mice) or parenchymal cells (parenchyma-iNOS mice). Analysis of congenic markers demonstrated that >95% of thymocytes in chimeric mice were of donor origin.

View Article and Find Full Text PDF