Publications by authors named "Ella Ioffe"

Efficacy of immune checkpoint inhibitors in cancers can be limited by CD8 T cell dysfunction or HLA-I down-regulation. Tumor control mechanisms independent of CD8/HLA-I axis would overcome these limitations. Here, we report potent CD4 T cell-mediated tumor regression and memory responses in humanized immune system (HIS) mice implanted with HT-29 colorectal tumors.

View Article and Find Full Text PDF

In the tumor microenvironment, multiple inhibitory checkpoint receptors can suppress T-cell function, thereby enabling tumor immune evasion. Blockade of one of these checkpoint receptors, PD-1, with therapeutic antibodies has produced positive clinical responses in various cancers; however, the efficacy of this approach can be further improved. Simultaneously targeting multiple inhibitory checkpoint receptors has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

The Programmed Death-1 (PD-1) receptor delivers inhibitory checkpoint signals to activated T cells upon binding to its ligands PD-L1 and PD-L2 expressed on antigen-presenting cells and cancer cells, resulting in suppression of T-cell effector function and tumor immune evasion. Clinical antibodies blocking the interaction between PD-1 and PD-L1 restore the cytotoxic function of tumor antigen-specific T cells, yielding durable objective responses in multiple cancers. This report describes the preclinical characterization of REGN2810, a fully human hinge-stabilized IgG4(S228P) high-affinity anti-PD-1 antibody that potently blocks PD-1 interactions with PD-L1 and PD-L2.

View Article and Find Full Text PDF

Anti-VEGF therapies benefit several cancer types, but drug resistance that limits therapeutic response can emerge. We generated cell lines from anti-VEGF-resistant tumor xenografts to investigate the mechanisms by which resistance develops. Of all tumor cells tested, only A431 (A431-V) epidermoid carcinoma cells developed partial resistance to the VEGF inhibitor aflibercept.

View Article and Find Full Text PDF

Approval of the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab by the FDA in 2004 reflected the success of this vascular targeting strategy in extending survival in patients with advanced cancers. However, consistent with previous reports that experimental tumors can grow or recur during VEGF blockade, it has become clear that many patients treated with VEGF inhibitors will ultimately develop progressive disease. Previous studies have shown that disruption of VEGF signaling in tumors induces remodeling in surviving vessels, and link increased expression of angiopoietin-1 (Ang-1) with this process.

View Article and Find Full Text PDF

The loss of interstitial capillaries is a feature of several experimental models of renal disease and this contributes to secondary kidney injury. Angiopoietin-1 is a secreted growth factor which binds to Tie-2 present on endothelia to enhance cell survival thereby stabilizing capillary architecture in-vitro. Previous studies showed that angiopoietin-1 prevented renal capillary and interstitial lesions following experimental ureteric obstruction.

View Article and Find Full Text PDF

Angiopoietin (Ang)-2, a context-dependent agonist/antagonist for the vascular-specific Tie2 receptor, is highly expressed by endothelial cells at sites of normal and pathologic angiogenesis. One prevailing model suggests that in these settings, Ang-2 acts as an autocrine Tie2 blocker, inhibiting the stabilizing influence of the Tie2 activator Ang-1, thereby promoting vascular remodeling. However, the effects of endogenous Ang-2 on cells that are actively producing it have not been studied in detail.

View Article and Find Full Text PDF

Hemangioma of infancy is the most common neoplasm of childhood. While hemangiomas are classic examples of angiogenesis, the angiogenic factors responsible for hemangiomas are not fully understood. Previously, we demonstrated that malignant endothelial tumors arise in the setting of autocrine loops involving vascular endothelial growth factor (VEGF) and its major mitogenic receptor vascular endothelial growth factor receptor 2.

View Article and Find Full Text PDF

Despite genetic evidence establishing angiopoietin-1 (Ang-1) as an essential regulator of vascular development, the molecular mechanisms underlying Ang-1 function are almost completely uncharacterized. In this report, we demonstrate that Ang-1, via Akt activation, is a potent inhibitor of the forkhead transcription factor FKHR (FOXO1), identifying for the first time a nuclear signaling pathway through which Ang-1 modulates gene expression. We use microarray analysis to show that FKHR, whose function in endothelial cells has not previously been elucidated, regulates many genes associated with vascular destabilization and remodeling (including angiopoietin-2, an Ang-1 antagonist) and endothelial cell apoptosis (e.

View Article and Find Full Text PDF

Angiopoietins are a recently discovered family of angiogenic factors that interact with the endothelial receptor tyrosine kinase Tie2, either as agonists (angiopoietin-1) or as context-dependent agonists/antagonists (angiopoietin-2). Here we show that angiopoietin-1 has a modular structure unlike any previously characterized growth factor. This modular structure consists of a receptor-binding domain, a dimerization motif and a superclustering motif that forms variable-sized multimers.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) plays a critical role during normal embryonic angiogenesis and also in the pathological angiogenesis that occurs in a number of diseases, including cancer. Initial attempts to block VEGF by using a humanized monoclonal antibody are beginning to show promise in human cancer patients, underscoring the importance of optimizing VEGF blockade. Previous studies have found that one of the most effective ways to block the VEGF-signaling pathway is to prevent VEGF from binding to its normal receptors by administering decoy-soluble receptors.

View Article and Find Full Text PDF

Diabetic retinopathy remains a leading cause of irreversible blindness. A critical early pathology in the disease is the adhesion of leukocytes to the retinal vasculature, a process that occurs, in part, via intercellular adhesion molecule-1. Once leukocyte adhesion occurs, endothelial cell injury ensues, as does blood-retinal barrier breakdown.

View Article and Find Full Text PDF