Deep learning has become the preferred method for automated object detection, but the accurate detection of small objects remains a challenge due to the lack of distinctive appearance features. Most deep learning-based detectors do not exploit the temporal information that is available in video, even though this context is often essential when the signal-to-noise ratio is low. In addition, model development choices, such as the loss function, are typically designed around medium-sized objects.
View Article and Find Full Text PDFDiffusion-weighted magnetic resonance imaging (DW-MRI) aims to disentangle multiple biological signal sources in each imaging voxel, enabling the computation of innovative maps of tissue microstructure. DW-MRI model development has been dominated by brain applications. More recently, advanced methods with high fidelity to histology are gaining momentum in other contexts, for example, in oncological applications of body imaging, where new biomarkers are urgently needed.
View Article and Find Full Text PDFPurpose: To develop and assess an automatic procedure for classifying and staging glaucomatous vascular damage based on optical coherence tomography angiography (OCTA) imaging.
Methods: OCTA scans (Zeiss Cirrus 5000 HD-OCT) from a random eye of 39 healthy subjects and 82 glaucoma patients were used to develop a new classification algorithm based on multilayer and multisector information. The averaged circumpapillary retinal nerve fiber layer (RNFL) thickness was also collected.
A growing number of studies have reported a link between vascular damage and glaucoma based on optical coherence tomography angiography (OCTA) imaging. This multitude of studies focused on different regions of interest (ROIs) which offers the possibility to draw conclusions on the most discriminative locations to diagnose glaucoma. The objective of this work was to review and analyse the discriminative capacity of vascular density, retrieved from different ROIs, on differentiating healthy subjects from glaucoma patients.
View Article and Find Full Text PDF