High-resolution three-dimensional data from sensors such as LiDAR are sufficient to find power line towers and poles but do not reliably map relatively thin power lines. In addition, repeated detections of the same object can lead to confusion while data gaps ignore known obstacles. The slow or failed detection of low-salience vertical obstacles and associated wires is one of today's leading causes of fatal helicopter accidents.
View Article and Find Full Text PDFThis study presents a comprehensive approach to mapping local magnetic field anomalies with robustness to magnetic noise from an unmanned aerial vehicle (UAV). The UAV collects magnetic field measurements, which are used to generate a local magnetic field map through Gaussian process regression (GPR). The research identifies two categories of magnetic noise originating from the UAV's electronics, adversely affecting map precision.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2023
Video anomaly detection (VAD) has been extensively studied for static cameras but is much more challenging in egocentric driving videos where the scenes are extremely dynamic. This paper proposes an unsupervised method for traffic VAD based on future object localization. The idea is to predict future locations of traffic participants over a short horizon, and then monitor the accuracy and consistency of these predictions as evidence of an anomaly.
View Article and Find Full Text PDFCommon electric powered wheelchairs cannot safely negotiate architectural barriers (i.e., curbs) which could injure the user and damage the wheelchair.
View Article and Find Full Text PDFSensors (Basel)
September 2021
Magnetometers measure the local magnetic field and are present in most modern inertial measurement units (IMUs). Readings from magnetometers are used to identify Earth's Magnetic North outdoors, but are often ignored during indoor experiments since the magnetic field does not behave how most expect. This paper presents methods to create, validate, and visualize three-dimensional magnetic field maps to expand the use of magnetic fields as a sensing modality for navigation.
View Article and Find Full Text PDFIEEE Trans Comput Soc Syst
August 2021
The COVID-19 global pandemic has significantly impacted people throughout the United States and the World. While it was initially believed the virus was transmitted from animal to human, person-to-person transmission is now recognized as the main source of community spread. This article integrates data into physics-based models to analyze stability of the rapid COVID-19 growth and to obtain a data-driven model for spread dynamics among the human population.
View Article and Find Full Text PDFFlat surfaces captured by 3D point clouds are often used for localization, mapping, and modeling. Dense point cloud processing has high computation and memory costs making low-dimensional representations of flat surfaces such as polygons desirable. We present Polylidar3D, a non-convex polygon extraction algorithm which takes as input unorganized 3D point clouds (e.
View Article and Find Full Text PDFSensors (Basel)
November 2018
Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS), can exploit this and additional information such as to improve navigation accuracy and safely perform contingency landings particularly in urban regions. However, building roof structure is not fully provided in maps.
View Article and Find Full Text PDFIEEE Trans Cybern
November 2017
This paper investigates a comfort-based route planner that considers both travel time and ride comfort. We first present a framework of simultaneous road profile estimation and anomaly detection with commonly available vehicle sensors. A jump-diffusion process-based state estimator is developed and used along with a multi-input observer for road profile estimation.
View Article and Find Full Text PDFThis paper presents a safety-based route planner that exploits vehicle-to-cloud-to-vehicle (V2C2V) connectivity. Time and road risk index (RRI) are considered as metrics to be balanced based on user preference. To evaluate road segment risk, a road and accident database from the highway safety information system is mined with a hybrid neural network model to predict RRI.
View Article and Find Full Text PDFA cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence.
View Article and Find Full Text PDF